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ABSTRACT

This report describes in detail the results of a study and development

program leading to a spacecraft quasi-isotropic antenna system for

space telemetry.

Two antennas are employed with an automatic logical switching

system to assure right circularly polarized spherical pattern cover-

age at near isotropic gain.

The principal antenr_ provides right circularly polarized coverage

over the maximum area theoretically possible and can easily be adapted

tO any 10 per cent band from 1 to 10 Gc.

The switching logic, which is designed to operate with one or two

reCelve_s and one transmitter, wiU assure a closed loop telemetry

,path through the better antenna. Several modes of operation maxiznize

,r a1_abUity

, _;,,'_.

for a given weight.
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at 45 ° to the input mode, with 90 ° differential phase shift to the

orthogonal components. The radiating section is eight crossed

slot elements equispaced on a circumference one-eighth of a

wavelength from a short circuit.

The secondary (fill-in) antenna is a right circularly polarized,

axial mode helix. Its beamwidth is adjusted to give optimum

null.fill-in. A quarter wave transformer on the input all()\vs a

good in_pedance match to 50 ohm coaxial line.

C. Logic

The logic portion of this study presents three mod_:s o: op,:ra-

tion of a spacecraft communication system. A m_'ans: of ground

control is presented which operates independently of tills switch-

ing logic. Consideration has been given tc_ providing a fail-safe

failure mode.

In Mode I, the system consists of a single receiver and two

separate antennas. The logic insures that the best antenna is

being used.

In Mode II, two receivers are used in conjunction with two

antennas, tIere the logic functions to keep the best receive r

teamed up with the best antenna and connected to the "on-line"

output. If a receiver should happen to fail, the Mode, II sy.-.tem

becomes a Mode I system.

Mod_ _ III adds an additional high gain steerable ant_.:q:_a '.,.iti_ an

a_,.quisition mode to a Mode II system. "Ihe Xlod_' Ill !o¢ic, vhen

activated, first provid{:s a means of establishing lc)c.k on this

tracking antenna without disturbing the transmit comm__micat:._n
link. After lock is established, the logic then permits the trans-

mitter to be switched to the high gain antenna. When not actixatcd,

Mode III operates as a Mode II system.

The ground control mode permits the switching function performt_d

by this logic automatically to be individually performed b5 a

ground comm,and. The ground control is po._sible _,nytime the

spacecraft is in contact with the ground station. Ground control

permits switching sequences not wired into the loeic. "I he

operator is provided with controls and information that ,.enable

him to provide the logic function.

I-Z }?-2670-35_2-.\



Consideration has been given to previding the best system
possible in the event of a failure. This is accomplished by
providing an optimum rest state and reverting to a simpler
mode or the ground control mode in the event of a failure.

I-3 R-2870-3582-A



II. PROGRAM GOALS

A. Modes of Operation

1. Mode I

This mode uses one transmitter, one receiver, and two antennas.

The logic operates two coaxial relays. One first determines

which antenna is used by the receiver; the other then switches

the transmitter to that antenna.

Mode H

.

This mode uses one transmitter, two receivers, and two antennas.

The logic includes all of Mode I, plus an extra relay at receiver

outputs which must also be controlled.

Mode Ill

B.

This mode is a Mode II system plus a remotely selected, steerable,

high-gain antenna. Logic is essentially unchanged, except that

remote control is mandatory here, optional in Modes I and H.

A demonstration of the feasibility o5 the logic for the above modes

does not require a complete system, but merely one of each type

of module, so that the various operations can be simulated. In

particular_ the relays give complete input/output isolation, so

that any given relay can be tested with all other s simulated by

loads plus a fixed coaxial system.

• :,, lnfact, given the receiver AGC characteristics, the entire logic
_: '_ :{'_ :iyJtem can be exercisedwithout any RF equipment whatsoever.

This is what was actually done in testing the logic.

Pattern Coverage Requirements

The pattern coverage desired from the principal antenna is different

for lunar and planetary missions. Definition follows:

I) Lunar Missions - Case I

The gain of the right circularly polarized pattern is to be

greater than -4 db from is.tropic over the angular range

H-1 R-2870-3582
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of 0 to 140 ° from the spacecraft roll axis. Zero

degrees is defined as the spacecraft apex.

Z) Planetary Missions - Case II

The gain of the right circularly polarized pattern is to

be greater than ÷1 db from isotropic between 0 and 65 °

from the spacecraft roll axis and greater than -3 db

between 65 and 120 ° . Zero degrees can be defined as

either end of the spacecraft.

The RCP gain in the fill-in region is to be greater than -6 db over

the area not specified for coverage by the principal antenna for either
case.

Laboratory test models of the two antennas for Case I are to be fab-

ricated and tested, but Case II need not ,be demonstrated.

Other Requirements

In addition to the various modes of operation and pattern coverage

requirements, the antenna system is designed to meet or demonstrate

its adaptability to the following specifications.

1) Fr e quency
Receive at Zl13 ±5 Mc

Transmit at 2Z95 ±5 Mc

2) VSWR

VSWK to be 1.4:1 maximum on both antennas.

3) Power Handling

The system shall be capable of transmittir_ 50 watts
of RF power.

4) Power Consumption

The logic shall operate with a maximum of 3.5 watts

of average power.

5) System Weight

The antennas, logic, switches, and cables shall not

exceed eight pounds total weight.

H-Z R-2870-3583



6)

8)

9)

Environment

The design approach shall be amendable to design

for one year in space environment.

Reliability

The system reliability shah be maximized and a

logic failuxe mode shall be provided.

Simplicity

The design shall be simple and practical. All fab-

rication techniques shall be within the state-of-the-art.

Ranger Spacecraft

Patterns shall be performed for various spacecraft

configurations to demonstrate the system's appli-

cation on a full scale mockup for a Ranger spacecraft.

H-3 R-2870-3582



IIl. ANALYSES OF THE PROBLEMS

A. Limitations on Patterns

1. Theoretical

It has been theoretically demonstrated that a singularly polarized

pattern cannot be isotropic 1, 2, 3s4 A typical example of an antenna
that demonstrates this is Riblet' spherical antenna. This is

basically a set of crossed dipoles {turnstile) fed such that the

radiation is right circular in one hemisphere and left circular

in the other. The polarization around the boundary of the two
hemispheres is linear.

Other examples of attempts to produce singularly polarized

isotropic patterns are given below.

Bell Telephone Laboratories had a problem similar to ours on

the Telstar Experiment. Due to the shape, small size of the

satellite, and the large amount of space available for the antenna,

a unique solution was found 5 that provided an equatorial circularly

polarized pattern with nulls at both ends of the satellite's spin

axis. The antenna consisted of a ring of circularly polarized

horns, all fed in phase, that encompassed the satellite. This

technique could not be applied to a spacecraft the size and shape

of the Ranger. It would also be too heavy.

Bugnolo 6 has also used the supporting structure (satellite) as

part of the radiating element and obtained results similar to the

Telstar antenna, but with linear polarization. The -3 db gain

coverage factor was 87 per cent. {Coverage factor is defined

• in the next section,

The fact that one antenna cannot yield right circularly polarized

isotropic coverage means that a minimum of two antennas must

be used. To avoid pattern interference, a switch must be

employed to utilize only one antenna at a time. To maximize

reliability, the switching action must be minimized; hence, one

antenna should cover as much space as possible and no more
than two antennas should be used.

HI-I R-2870-3582
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at A Measure of Isotropy

The normal parameters of gain, 3 db beamwidth and.minor

lobe level do not apply to antennas that approach isotropic

coverage.

To evaluate such an antenna, we can specify a required gain

level for the desired polarization over a sphere or portions of

a sphere, then record and plot a three dimensional gain contour

map and note the angular limits of regions that fall below the

specified level, and finally, calculate the coverage factor 7

(C. F.). For our purposes, G.F. can be defined as the area

in which the gain is equal to or greater than that specified com-

pared to the area for which a gain has been specified.

C. F, " .

% %

\\ sinOdOdO

sin0d0dO

100T0

where _l, _4%' Ol'OZ specify area that does not meet specified gainand 03, e3, 04 define area for which a specified gain is required.

NOTE: If more than one area is below specified gain, the
numerator of the second term is the sum of the individual

areas.

For full spherical coverage, the denominator of the second

term = 4 7T steradians.

An example of the use of coverage factor can be made using the

specifications for the principal Case 1 antenna. Since _ = o,

_4 = 360", 93 = o and 04 = 140 ° , the area over which

coverage is specified is

360 140

A s = j / sin 0 d O

O O

d 0 = 3. 5377-steradians

III-Z R-Z870 -3582
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If we assume measured gain contours show the right circular

gain to be above -4 db over all the region specified except for

the area bounded by 0° @ ¢ & 360 ° and ZO ° _ e • 30 °

Then; 360 30

ff
0 20

sin 0 dO dO = O. 1487/" steradians

Now

I O. 14877" / 100% = 95 8%
G.F. = 1 - 3.53"77" J

3. Spacecraft Shadowing

Theoretically, a full 100% coverage can be obtained from one

antenna if more than one sense of polarization is accepted.

However, the antenna must have an input terminal and be

mounted on a vehicle to have any practical value. This vehicle

will shadow (block) the antenna and limit the coverage obtainable.

An antenna that possesses the theoretical maximum single

polarization coverage can be mounted on a resonable size space-

craft without serious pattern deterioration if,

1) the spacecraft is positioned to shadow only the

null region of the antenna's principal polarization

pattern, and

z) the spacecraft has no protruding, elements that will

reflect the incorrect polarization back into the region

covered by the antenna.

When reflection or diffraction from the spacecraft creates

unacceptable deterioration to the primary antenna coverage,

the problem can usually be overcome by redesigning the space-

craft to deflect the unwanted energy into or near the null region.

Then the secondary antenna can be designed to provide greater

gain than any of the diffraction lobes. This may result in an

enlarged secondary antenna coverage area, but 100% coverage

can be obtained in two sections, with only two antennas.

III-3 R-3870- 3582



B, Environmental Considerations

The requirements of a simple, practical, lightweight, highly reliable

antenna system that can be adapted to operate for one year in space

greatly restrict the types of designs that can be considered.

Ideally. the antennas, which are external to the spacecraft, should

be all metal, self-supporting, possess no moving parts or protruding

elements. A basic spherical or cylindrical shape would allow very

thin walled material and stillmaintain strength.

111-4 R-2870-3582



IV. POSSIBLE SOLUTIONS

A, Types of Antennas

1. Crossed Slots in Rectansular Waveguide

One of the possible solutions considered to meet the goals of

Section H and overcome the problems of Section III is the quadra-

ture array of rectang8ular waveguides with topwall crossed slot
radiators. Simmons has described the uSte of a crossed slot

in the top wall of a rectangular waveguide as a circularly polar-

ized radiating element. Four of these waveguides can be arrayed'

in a quadrangle to provide a full 360° coverage in the omni plane.

This provides only four elements in the omni plane and, as noted

in Section V-B-l-f, the ripple in the pattern exceeds 3 db. Other

disadvantages of this type of element are:

1) each rectangular waveguide requires a traveling

wave with a load at the end that absorbs I0 to

Z0% of the total power;

z) the four-way power divider to feed each waveguide is

a difficult component to design compact and lightweight;

3) total weight is estimated as excessive.

Z. Coax-Fed Slot-Dipoles

A smaller, lighter weight design is the coaxial waveguide with

longitudinal slots and probe-fed dipoles. This design was not

given detailed consideration for the following reasons:

l) The phase centers of the slots and dipoles cannot

be made to coincide so they cannot be circularly

polarized over a very broad angular range.

z) Adjusting each element's conductance and phase
would be extremely difficult.

3) The dipole support should be thin dielectric and the

design would not be mechanically sound.

IV-1 R-Z870-358Z
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3. Slot-Fed Parallel Plates on Circular Wave_uide

One of the more practical designs originally considered is an

array of 45 ° inclined slots around a circular waveguide with

a rotating Hll mode. The slots feed circular discs (parallel

plates) whose spacing is set to provide 90 ° differential phase

shift between the TEM and the TE (vertical and horizontal)

modes excited by the 45 ° inclined slots.

A disadvantage of this design is the enlarged diameter of the

radiating section (outer edge of the parallel plates). Generally,

the larger the circumference around an omni antenna, the greater

the ripple in the pattern. Another possible problem could develop

due to mutual coupling of the various modes excited between the

parallel plates.

This design was chosen as a backup to the one selected as the

best approach.

4. Crossed Slots in a Circular Waveguide

The design selected as the best approach to the omni-directional,

circularly polarized antenna problem is a ring array of crossed

slot radiators on a circular waveguide. The waveguide is fed

with a circularly polarized Hll mode and terminated with a short

circuit. This design is extremely simple. Since it is no larger

than the waveguide itself, it will be the lightest possible unit.

The cylindrical design with no protruding or delicate pieces will

result in a very strong and highly reliable design.

Since this design is the one actuaDy developed, complete analysis,

_ v_i;ttt_or_tical and experimental, is given in Section V-B of this

r epot t.

5. Secondary Antenna

The secondary antenna to fill in the null (region not covered

by the omni antenna) cannot be selected until the null region is

defined. However, several well known designs can be utilized

depending on the beamwidth required.

For half power beamwidths between Z0 and 60 degr ees, an axial

mode helix 9 would be a good choice.

IV-2 R-2870-3582
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10
A conical spiral has approximately 60 degrees beamwidth and

it is more constant with frequency change s.

An Archimedes spiral 11 (planar spiral) has approximately 80

degrees beamwidth and is also broadband. This design, however,

has the disadvantage of requiring a balanced-to-unbalanced imped-
ance transforme r.

Switchin_

1. Solid State Relays

The use of solid state switches was considered. However, these

were rejected on the following counts:

a) continuous holding power necessary

b) type of power - (high current/low voltage, plus

low current/high voltage) - meant added power

supplies, cancelling weight and size advantages

c) insertion loss higher than mechanical relays

Z. Mechanical Relays

Mechanical relays have several advantages. Their power

handling, insertion loss, and isolation are superior to those

of solid state devices. Latching configurations are available,

saving on power consumption. In addition, use of latching

relays simplifies the logic; since they "remember" which pos-

ition they hold, the logic does not need to do so itself. Mechanical

.:": :_W.e_O _tre slower than solid state switches, but this does not seem

a disadvantage when the desired time delay between loss of signal

and switch action is considered.

Logic

The 1 o g i c constraints did not allow much leeway as to the general

logic pattern. The mechanization of this pattern, however, allows

a number of options to be considered. The logic can be broken down into:

1) a decision element which determines what actions are

needed, and when they have been satisfactorily completed
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Z) a timer to produce required delays, etc.

3) gate circuits to route orders correctly

4) control circuits to operate the coaxial relays

Transistors are a natural for the decision element. Ordinary (bipolar)
transistors were used in the breadboarded module. In case the AGC

loading of this unit is excessive, or the environment is expected to con-

tain high radiative conditions, field-effect transistors could be substituted

easily. While magnetic amplifiers would possibly improve the reliabil-

ity, the added oscillator needed to power them would probably cancel
this advantage.

Diode-transistor logic was selected for the gating circuits. This

type of circuit is easy to design, gives good isolation and consistent

results. In effect, it allowed remaining circuits to be designed separ-

ately, by absorbing the interface problems.

The timer selected consisted of a one-minute clock plus a binary counter.

Bipolar transistors were used in both. Consideration was given to the

use of magnetic counters, since these would combine period immunity

with higher (than 2.) counts per stage. Such devices at present are not

readily available --particularly in the required size. Conversion, at

a later date, to such a counter would not significantly affect the remain-

der of logic, assuming size to be compatible.

The coaxial relay control circuit finally selected uses controlled switches

to operate the relays. The relays selected include a switch to inter-

rupt coil current as soon as relay has transferred, so these switches

are satisfactory. Required size and drive power is reduced by an

order of magnitude, as a result. No alternatives --miniature relays,

conventional transistors, etc. , were found that could match their per,

forrnance. The controlled switches were themselves tripped by pulses

from conventional transistors. No particular advantages were noted

in the possibility of using field effect transistors here, since low driv-

ing impedances are involved.

Conventional sized components were used in the breadboard circuit,

since the required package size could be met with them. Considering

power levels, micro-size resistors and transistors could be used,

together with welded-contact techniques, to further miniaturize the

circuits if desired. This would have to be done carefully, however, to
avoid loss of reliability.
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Do Conclusions

After preliminary evaluation of four types of .toni antennas, it was

determined that only two could be expected to meet the requirements

and that one was obviously superior. It was decided to place full

emphasis on the crossed slots in circular waveguide design, since

it is basically the same structure as the parallel plate design without

the disadvantage of the plates.

A survey of the coaxial switch suppliers and comparison of the best

solid state (diode) switches with mechanical latching relays revealed

the superiority of the mechanical relays for space applications. Lower

power consumption and insertion loss are the chief reasons.

The well defined logic requirements left little choice in the block dia-

gram layout of the switching circuitry.
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V. ANTENNAS - CASE I

A. Introduction

Bo

Development of the antennas for Case I was the major part of this

study program. Sections II-B {pattern coverage and gain requirement}

and III-A, -B and -C {analysis of the problem} define the type of antennas

required. Section IV-A {possible solutions) concludes that only one of

the possible omni-antenna designs was worthy of detailed analysis

and development. The following gives the complete theoretical analy-

sis and development details of the crossed slots in Circular Waveguide-

Omni Antenna. The selection of the helix as the secondary antenna

and details of its development are also included.

Omni Antenna

I. Mode and Radiation Theory

a. General Discussion

The fundamental element of the omnidirectional antenna

will be a ring of crossed slots or holes located circum-

ferentially around a circular cylinder such as is illustrated

in Figure V-I. Each crossed slot or hole will be a circularly

polarized radiator of a given sense, the preferred sense.

In order to obtain adequate coverage in the northern direc-

tion {see F_gure V-l} for this sense of polarization, the slots

or holes will be phased progressively around the cylinder

so that the sense of the ring is the preferred sense in the

northern direction.

Actually, each slot will radiate a linear polarization in

both the northern and southern directions. The progress-

ive phasing around the cylinder, 360 ° phase for one revolu-

tion about the cylinder, causes the contributions from each

slot to add constructively for one sense of circular polariza-

tion, the preferred sense, and to add destructively for the
other sense in the north pole direction. Toward the south

pole the sense of polarization reverses.

It is possible to make extremely accurate theoretical cal-

culations for the radiation field of such a ring of slots or
holes on a cylinder provided the cylinder is assumed to be

infinite in length and no interfering, scattering objects exist
in space. Such calcul__t_een made and verified
by Silver and Saunders lg. The work of Silver and Saunders

is applicable for cylinder s of small radius. Although their

theory is exact for any cylinder radius, their solution is in
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the form of a modal series which converges very slowly
for large cylinder radii. For radii of approximately two

or three wavelengths or less their solution is easily applied
(depending upon the computer machinery available). It will
be seen shortly that our method of exciting these slots wiU
permit a small radius allowing us to'use the theory of
Reference 12. From the point of view of the exterior pro-
blem, that is the radiation problem exclusive o_ tt_e excita-
tion problem, we will show that the radius of the cylinder

has little effect on the elevation pattern (0 plane) r esulting
from the _undame_l ring element and very little on the

azimuth pattern (_ dire_ction, see Figu_re V-2), providing ,
enough slots or holes exiat in the ring element. The inter-
ior or excitation problgm makes the radius a more sensitive

parameter for the system. This effect is investigated theoret-
ically and found to cause no problem over a substantial
bandwidth.

The assumption of infinite length is not a serious one for
the exterior problem, since it will be seen that the field
decays rapidly away from the slots along the cylinder.
There are no surface or leaky waves excited, since this
cylinder will support neither. Hence_ a total cylinder

length of a few wavelengths is adequate for the problem.

The presence of scattering objects of great size on the

other hand will obviously be serious in their effects. The

presence of the space vehicle by itself is not too serious

because of its location near the south pole and can be

improved by arraying techniques which are discussed in

another section. The practicality of these techniques will

depend on the specific space vehicle involved. Such obstacles

as a large paraboloid antenna or solar panels protruding far

out from the south pole pose a problem which must be over-

come by other techniques, as discussed later.

For the exterior problem, we will develop the formulas
necessary to determine the radiation fields of rings, of
slots and l_les and make extensive numerical calculations
of such fields. We will make extensive calculations which

include the frequency characteristics of the modal system
exciting the slots and holes. Asmentioned previously,
the pure exterior problem which assumes a perfect excita-

tion as a function of frequency indicates the system is very

broad band. When the excitation system is included more

realistically, the frequency dependency results are obtained

and the inherent capabilities of the _ystem are carefully

defined theoretically. In both cases, ignoring slot and hole

resonance characteristics, the system proves itself to be
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inherently wide ba_d. That is, a 2.0 per cent bandwidth

is intrinsicall_ readily obtainable. For low conductances,

crossed"slots in rectangular waveg_des have been shown

to be very broad band_ by Sinlnlons -_, No great change is

expected in this systelr_, although slot resonances do pre-

sent bandwidth problen_s if high efficiencies {i. e. , high

conductances) are required from a few slots:

It has been found that the desired excitation of the slots

can be obtained by a standing circularly polarized mode
in the cylinder. This mode is obtained by two crossed

Hll (TEll) circular modes in phase quadrature. The
theory is developed in detail in the next section. With

this modaI excitation of the ring element, it is possible

to use the series solution obtained by Silver and Saunders.

The practical problem of developing such a modal set in

the waveguide is also discussed in a later section.

Mode Theory for Cylindrical Circularly Polarized

Omni Antenna Feed

In this .qecti,-_n............ t t.,,e ,,-ill mathematica!l,y "_o_.... ;_'^,_,=the modal

system required in the cylindrical waveguide. This rnodal

system wi!l excite the ring of crossed slots (or hoies)

depicted in Figure V-1 with a circularly polarized wall

curreI;t on the reside of the guide. The proper circumfer-

ential phase depends on the ring of slots being located an

appropriate distance from the short circuit. The precise

conditions for obtaining the correct wall current distribu-
tion at the slots will be discussed.

The notation whictl wiil be used is that of Marcuvitz 14. A

cylindrical (ci,:c_L!ar) coordinate system is used, If

and

circumferential wall current density

longitudinal wall current density

then the wall boundary condition

-_]: A _ A -_: n x H : r x H

/h %
(where n and r are unit vectors normal to the cylinder

wails) yields for these currents (see Marcuvitzl4}

!

i #_i I

COS m _
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and

Jz : H_ = I i _'Z_ m_ "
1

sin m_

where

i = m, n = 1, 1 for the dominant Hl l mode,
J

)_. = 1.841 for i = m, n ;
1

Em = Neumann Constant ( = 1 for m = 0, = 2. for m =_ 0),
If

_-c i = cutoff wavelength = (2";Ya/1. 841),

a = radius (inside) of cylinder,
I!

2 ,_- 1. 841
kc i = ---w- ='- a

Ac i
1!

K i = guide propagation constant

2 3

\

"2

=-_/k -2--' kc i

1.841 i 2TV

a _ )_I

gi

_' 1
= intrinsic space impedance = -- = = 377 ohms,

II fl

a0d I i and \r are rel_te.d excitation coefficients for the
ith n_ode. 1

If ff

The excitation coefficient I i is readily obtained from V. 1
for any mode by

" i I d " !
I. = I V.

" " d Z i !
1 -i K i Z. i t

" 1

whet e

II

Z. =
1

so that

" 1

1 -j .j" k

k
k.--v--

1

[d V"I, il =
/

• K i J d

J Z_377) < ,,
} d (K i z)

It

V.
1
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With the appropriate substitutions we find that
II

J_ = j A V i cos

and

/ d I! /
= l s in

Jz j B i d(K._, z) V., i

where

F-

k (1.841) z X
A = !_/_ g'TT'az (377)7 11 841)¢ I

and

and

B "-

[ _ / ?-7/- 2. 1 841 Z

(-X-I - k
-\'W 2Tya (377) "_/(1.841) z - 1

J

IV -_) g 1"841"2" ": 7( - (7 _ Lx

(B/A) = I (1 841) 2. !
L " .j

For cmr purposes, only the ratio (B/A) is of significance.

A traveling H 1. (TE circular waveguide mode) wave
in the cylindri_ll 11waveguide will not produce a ring of

circularly polarized wall currents. In this case, for

we find

and

,, -j K i
V ._ r_-zz,• K_.d ,

1

!!

J¢ = j A cos _ C -j Ki z

!l

J = B sin $ _-J Ki z
z

Since (B/A) is a real constant, there are only four points

in _, around the ring, that have circularly polarized wall

currents. They are

A sin ¢ = ± B cos ¢ ,
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where for the + sign we obtain @KC with one sense

of circular polarization and with a ";Trotation, _RC =

@LC + 7/-, we obtain the #LC solution for the other sense
ofcir cular polarization.

Consider now a 90 ° rotated Hll mode in phase quadrature
with the original mode. We ob_c_in the space quadrature

by transforming

tll _ ¢ + 77"/2

and noting

and
cos (¢ + 7F/fi) = -sin ¢

sin (¢ + "r_/2) = + cos ¢

The phase quadrature is obtained by operating on the

original equations with J = V -l We find for the

new wall currents of the rotated H II mode

and

J_ = A sin

I!

c-j K.1

N

fz j B cos #C -j K.= 1

The total wall current for this traveling circularly polarized

Hll mode is found by combining the equations

and

j T = Jz + jr
Z Z

with the result that

and

II

j_T = j A _-J ¢ U___-j Ki

II

jT _ n ___-J _ (_-J K.= .... i
Z

Z

Z
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-j ¢
We note that the phase dependence, _ , of the above

modal combination is appropriate for excitation of the ring

element. Thp polarization is, however, linear and tilted
at an angle _i,

where

(T)@ = arctan Jz = arctan (B/A)

JOT

(B/A was given earlier as a constant depending on the

frequency and guide radius only.) The current angle _jfor this modal system is depicted in Figure V-3. If
was made equal to 45 °, the above result suggests that a
wave traveling in the opposite direction,

I!

" +jK. z
V. = _ 1

1
II

would combine at half-wavelength /Z) intervals
to give circularly polarized wall currents of a given sense
and with the same desired O-dependence

G-j ¢

Actually, the circularly polarized current can be obtained
independent of the ratio (B/A}, but dependent on the z-

position in the guide as indicated. Furthermore, although
the sense of circular polarization does not change at 2k/Z
intervals, the phase does alternate.

A wave traveling oppositely, in z, to our originalwave is
a standing wave. Therefore we have as the excitation
voltage coefficient

v! t!

V. = sin K. z
1 1

and

d T! f_

V. = cos K.
1 1

tl

d(K i z)

Z

Therefore, we find that a single standing H I1
in the currents

and

I!

J_ = j Acos ¢ sin K.1 z

II

Jz = jBsin _ cos K.1 z

mode results

V-9 R-Z870-358Z
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FIGURE V-3
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The rotated H 1. standing mode that is in phase quadrature
with the origin'a_ standing mode has wall currents

and

II

J; = A sin # sinK.
I

Z

r II

J = -B cos ¢ cos K. z
Z I

Combining J_[ with jr and J with jr gives, for the total
wall current "due to a_standin_ " zcircularly polarized H ll mode
in the circular guide, the results

and

_T i!
= j A e "j _ sinK. z

1

jT = -B _-J _ cos K. z
Z 1

The above currents have the desired _ dependence. Taking
the above current ratio

{ / ) = j {B/A ctn K i z)

we see that the condition for a circularly polarized wall
cur r ent is

It

• 1 = (B/A) ctn K. z
1

where the ± sign is chosen appropriately for the desired
circular sense of rotation.

The correct

arization is seen to be, therefore
z positions for a given sense of circular pol-

.... el _/( ) - (

)L -1 .-841 _ arctan

The ratio (jT/ jT) varies from - oo to + c_ as z
ar" z _ ,, . . .

v les over ( /lg2/g)" Hence any polarlzatlon Is
obtainable and repeats lhlentically every ( )k E /2). The

precise position of a given polarization with_espect to a .

zero or short in the line depends upon {B/A),.or the fre-

quency and quide radius. It will be shown later that this

change causes no deterioration of the ring element pattern
over a wide bandwidth.
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Although the currentsare circularly polarized in the

same sense every {)k_ i/z) along z on the guide, the
formulas for _'T and v :[T show clearly that the
phase of this circularly polarized excitation for the slot

rin_ element alternates between 0 ° and 180 ° every
t$ --gi /2.

Radiation Fields of Axial and Circumferential Slots

in a Cylinder

1) General

The mode theory discussed in the previous section
showed how a ring of right circularly polarized wall currents
on the inside of the cylinder could be excited. It was assumed
that the cylinder was perfect. That is, the radiating aper-
tures were assumed not to affect the internal mode. When

these apertures (slots, holes, etc.) are cut into the wall,
then the currents are disturbed.

In the exterior problem which will now be discussed we

have a similar approximation. We assume that over an
arbitrary aperture in the cylindrical waveguide there
exists a known tangential electric field distribution

and
= fl (¢, z)

zz = fz z)

in cylindrical coordinates as illustrated in Figure V-4.
This distribution will be the same as that which was assumed
for the undisturbed currents on the interior wall of the wave-

guide. Once given fl (_' z) and f2 (_, _) we can solve
the exterior problem'to determine tlae radiated far field
pattern.

Ideally, we should solve the interior and exterior problems
simultaneously to arrive at a true solutiofi to both pro-
blems. As a by-product of this solution, the slot or hole •

admittances would also be determined. In general, it is
beyond the state-of-the-art to solve this type of problem
exactly, although Stevenson 15 has done this approximately
for slots 1 6in thin walled rectangular guide and Silver has

shown how a solution could be approached. In general prac-
tice the assumptions indicated above have proven excel-

lent, expecially for narrow slots in thin walled guides. Very
good results are obtained herein also. Silver and Saunders 17
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have published very good results for a transverse slot.

We will obtain results for crossed slots, holes, anda ring
array of crossed slots which also agree very well with

experiment. (However, the experiments for a ring array
element are difficult by comparison because of the omni-

directivity of the pattern and the non-infinite cylinder. )

None of these specific computations have been performed
before this time.

Silver and Saunders 18 have shown if F__ = fl (_' z) and

Ez = _fZ (#' z) are tangential electrical field distributions
over th6 aperture shown in Figure V-4, then the resultant

far electric field components E B and F__ are given by
(at distance R)

OO

EB .2W-2R n = -_x_

.n+l "
-jn

sin 8 H_na),4 (k a sin 8)

- zz

d_ Cjk_c°s e ]¢

XJz 1 ff :)

and
cO ¢

n

_-jn_

(k a sin 8)

)eJ n_d/_

+

k a sin 8 Zl I(_)

In this section we will consider the radiation field from

rectangular slots such as is illustrated in Figure V-5.
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Depending upon whether (a @o1 _ ) __1 or (_;/a _o) _:-:1,

the slot is respectively axial or circumferential. A com-

bination of the axial and circumferential slots will give us

the basic crossed slot. Experimentally, a crossed slot

rotated 45 ° was used. By comparing the results of a cir-

cular hole aperture (next section) with those obtained for

the crossed slot oriented vertically or circumferentially,

we can show that no significant difference exists. Hence,

a crossed slot that is rotated by 45 ° from the theoretical

crossed slot should give no significantly different results
either.

7.) The Circumferential Half-Wavelength Slot

In this case we assume (2W/a _o)-_<1. The tangential

electrical field in the _ direction in the aperture is there-

fore equal to zero. That is

a

F_ = 0 _ F I = G 1 = 0,

where F and G are defined by

for both f. and f_. That is, we assume separable tangential
field distrxLoutions. _

The z-component field is given by

c-j¢Eaz = F£(¢) Gz(z) = cos

for (-@.. _ _ __ _o) and ( -W _ z _ W). Outside of

this lat'{er range for _ and z we have both E a and F._a
equal to zero.

The _-J _ dependence for E a is due to the mode phase

variation discussed earlier. _ has b.e_n found that the effect

on the radiation field due to this e -J _ factor is fairly

insignificant. Mathematically it does introduce a reasonably

significant complication. Nevertheless, the factor is
retained in the calculations since the effect of the factor

on the radiation pattern is difficult to ascertain before
calculation.

The equation for E 0 becomes, for this case,
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_

w

i
J-w ZW

.n+l _-jn¢J

0o j

where t = n - l, or

,_-JkR / _'
%;- 127r_i_,_.

' n'- -%,

where for I> we get

{

.n+l - insJ
i

sin O H(n2-1(k a sin O)

w

¢ k_ cos O
I_ = j w Vw_¢-- _c:-_j,_.. d_

V C

sin (k w cos O)

(k w cos O)

and for I_ we get

%
_I cos p 0o

*-,'o,.7" ¢-'Z%-o-

Note that V c is an arbitrary complex constant coefficient
which will ultimately be adjusted in relation to a similar

constant for the axial slot in order to achieve a circularly

polarized slot excitation from the exciting modal currents
discussed earlier.

the above terms for F__ and writing F_ forCollecting %
we have finally that
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f

.n _C- j n _cos (n-1)x (l/z) _ J cn

o=o

e+ n°cos'°+li °lll, l+ L 77" 2

L_z_-;o) - (n+

where _ ; Newmannconstant._= Ifor n= 0 and2. for n 0 When the factor _-J is not used for _a
we obtain z

c 1E° : -J_;-_r_:R _ L(k co. o) iw Z¢o I

x

J 6n r cos n _ 1(n2 [ "rr )Z- n 2n = 0 sin @ H )(kasin@) (_o

We have retained the factor _-J _ despite the fact that

we have found the above two equations (for our range of input
parameters) yield little difference in the radiation fields.

Another possible approximation, made by Silver and Saunders,
is

sin (k w cos 8)

(k w cos 8)

since w is very small. Our computations will not include

this approximation, although it is a good one. Although
these approximations are valid, their usefulness is limited

when high speed machine computations are made.

The equation for E# becomes

oo

(_-jkR) n_ rjn_ jn¢ ( ncot@ )
F_ = _ = -_H (2") (ka sin 8) ka sin8
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X w Vc kc-J
-w

cot O )
ka sinO

oo

n=_. [n Jn e-Jn#

_LHnCZ'_kasine)_ _/3J

Letting E 0 --_ E;
values for

finally

as a new notation and inserting the

I_ and I/_ given earlier, we have

X

c

E¢ (kw cos e)

co

- .n -jn_nj

n = -cO H (ka sin 8)

cot O )ka shaO

Since it is generally useful to have a summation extend from

0 to oo rather than - oo to oo we may make several man-

ipulations to find

_- jkR,

ka sine] = 0

AF  kwco o)l c " )Vc 1. (kw_osO) J

.n

n j _n

[H(n2_)l(ka sin 0)-}_n2_l (k a sin 0)]

X

I(e -jn_ cos(n-l) _o7r )z

cos (n+l) 0o

- (n+l) 2 j
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3) The Axial Half-Wavelength Slot

In this case, referring to Figure V-5, we assume
a _/Z w = a _ /_ << 1. Hence we find that the
tangential electric z-component in the aperture is zero,
that is

E a = 0 =_ F z = G z = 0z

The _ component in the aperture is given by

F__a = F I (_) G 1 (z) = VA,, cos (TTI_ z)
2a¢o

!

Note that we use __ in place of _ since both these quan-
o

tities will exist in t_e crossed slot and we must distinguish

their values. Note also that V A iB the complex excitation
constant for the axial slot.

This slot gives rise to no 0 - component in the radiation
field. That is

A 0
E 0 =

The _I component is readily found (see Silver and Saunderl_)

for the case

. X/a

Actually, the_
changes of
We obtain,

radiation field changes very little for small
around _k/g, so this assumption is valid.

A /____-jkR"1 VA [cos (7-F/Z cos 0)l(i/a )

x

oK)

n = 0 {sin 0)

.n

J 6n .cos n ¢ (
[H(z) (k sinO) - H (z) (kasinO_[ n-I a n+l

V-Z0 R-Z870-358Z
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/ .i _11; i_ ....

where _n = Neumann constant. When _o is small and
the series converges rapidly we may assume

sinn 1

Although these assumptions are valid for the numerical

calculations performed in this report, the above approx-

imation was not used in these calculations.
%/-

We will, in alater section, adjust V A and V e so that

at e = 90 ° and ¢ = 0 °, inline with the slots centers

and the cylinder center, the radiated field is circularly

polarized when the circumferential and axial slots are

radiating simultaneously. The total field is, of course,

simple the sum field in this case:

d,

and

c A c

E 0 = E e + E 9 = E 8

c
E_ = Z_ + E_

The Field of a Hole Aperture in the Cylinder

The computation of the radiation field of a circular hole in

wall of the cylindrical waveguide is of interest for several

r ea sons.

As explained earlier, if a computation of the radiation field

due to the hole aperture is very little different than the field

due to a crossed slot aperture, then a rotation of the slots
will make little difference in the radiated fields. Rotating

the slots may be valuable for mechanical or space saving
reasons. Actual computed results do in fact verify the

above reasoning when compared with experimental results.

In general, the hole is very simple to construct in the wave-

guide in comparison to the slots. Furthermore, the hole

provides only one variable parameter, the radius, whereas

two slot lengths exist for the crossed-slot. Variation of

these parameters, radius or lengths, has little effect on the
radiation field, however, although they very significantly

affect the admittance, the aperture presents to the waveguide

mode system. We will not attempt to compute that effect.

Strictly speaking, an elliptic hole would allow two variable

parameters to be adjusted. The hole that we shall consider
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will not be exactly circular either, but rather it shall be
that shape which would occur if it were drilled with a cir-

cular drill. Hence, referring to Figure V-6, the projection
of the aperture on the y-z plane is a circle, but the aperture
is somewhat more complicated.

The radius of the projected circle is
this circle is

2 2 c_2y + z =

CL and the equation of

The radius of the cylinder is a. Expressed analytically
as a surface we have

for the cylinder.

/D = %/x Z + y2 ---- a

In effect, the intersection of the hole cylinder

z zy + z =

and the waveguide cylinder

p ..

defines the aperture hole.

simultaneously to find

a

We must solve these equations

el(z), Cz(z), Zl(¢ ), and z2(¢) (see Figure V-6)

so that we may ultimately evaluate

zg ( ¢2(z) jn/3

zI I(z)

F(_)C jn d_jz (j_)
1 1 /_

for the radiated field (see Section c.). (Either _1(_) and

_Z_ ) or Zl(j_ ) and z2 (/_) is necessary).

Solving for the intersection of the two cylinders gives for
the aperture hole, the equations:
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z
2 2

= ± , - a sm

and

_/ckZ Z
- Z

± arc sin 2
a

From this point on, a number of assumptions and approxi-

mations will be made in determining the field radiated by

the hole. Ultimately, the computed results will be shown

to agree very well with the experimental results so that

the assumptions and approximations are indeed good ones.

The first assumption is that for the tangential field in the

aperture we will assume a ur_iform amplitude distribution

with a phase variation @ -j_. For a small hole, this

assumption is clearly good. However, it does give good
results for holes with Z7/'d- _,. We assume, therefore,

that for a z-directed current excitation

and
E_ = 0

! - ._ .f-j

Z = = F z (#) = G z (z)

when the hole is excited with a z-directed wall current

inside the waveguide. The quantity V z is an arbitrary
complex excitation coefficient for the hole. This is sim-
ilar to the circumferential slot.

We find, in this case, that

z L

f ik_cos 8d_= e
Z Cl zI

+arc sin a_ b

ccJ (n -1)_

J-arcsin- /0C2 , /.Z
a2 b "

The right hand integral (the first integration) gives

[ fT_ z z

2 sin [(n-l)arc sin_-a_!rcf ' / ,2. ' A 1 sinTJ:2

[(n-l) arcsinVQL a; z j

2
z
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We now make two approximations.

series will converge rapidly so that
we require that C_ _ _=a.

and

We assume that the

n is not large, and
With these approximations we find

_cL

_ 2 i k z cos 0
Z d_a oL

we obtain the convenient form

1

j e)77d._I _ (O_/a) V z "_[1- 77 2" (_j(oL k cos
-1

= (C_/a) v z (Zl + j z2)
where

1

zl : j dl - _ 2
-1

Ip.

and

b = OC k cos e

We see by symmetry that

I 2 = 0

In order to evaluate I 1
mation. Note that

b = C_/_ ZqT"
max

and cos bma x 7_max

cos bT_ dT_,

_i,, b_ d_.

we must make an additional approxi-

= cos ( oL/)_ 2-_).
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if _ _ 1/10 _ then cos bn_. x 77 max

If we assume therefore that

cos b 77 _ I - b 2 77Z/Z

we will have a very good approximation.

and
I 1 _ "/T/7- 77"116 b z

oL2 k Z Zcos 8

I = (c(la) v z ('rrIz)(1 - 8 )

For the z-directed wall current excitation we obtain for

the radiation field therefore that

E o -j IzTrz v z (a,la) Trlz (1-

sin 0 H {2) (ka sinO)
n

cCZkZc°sZed8

and

R]
o_

x 2_. C

n=0 [hlZ)
[ n-1

Vz [ <'_ai'FF/Z (1 -cLZk:c°s2"O)] (kasincot Og )

n jn 6;r_ cos n @ /']

(ka sinO) 'H (z) 'k )]/
- n+l_ a sinO

JJ

When the waveguide wall currents are purelFcircumferential

or _-directed we assume that the tangential aperture
distribution is

and

E a : 0
z

a _.
E 0 F 1 (_) Gl(Z ) = ---Y-{L- _-J¢

zot
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where V_ is an arbitrary complex excitation coefficient.
This case'is similar to that of the axial slot. In this

case we make the same approximations that were made
earlier and find fo_radiation field that

and

E$ = 0 = (E 6 due to C-directed current)

E _ I 3

2"/7"Z R n=-co H (2)' (ka sinS)n

where I is the same double integral evaluated earlier.

Hence we obtain finally that

X

e- j k R /

oQ

Z J _n cos

t_t n-, (ka sin{}) -

I( .oLZ k 2 2 )31 8cos 0

7
n ¢ i

t

(Z) k a s
Hn+l( in O)]_

When the hole is excited by a circularly polarized current

we merely add the ¢ and z-directed current excitations

with appropriate values for V$ and V to get the total
field components z

and

z zE 8 = E + E 8 = E 8

We will actually combine the total E A and Et_ cornponel,ts
to compute the total circularly polarized components directly.

In addition we will compute the total field of a ring array of

holes or crossed slots arranged around the circumference

of the waveguide cylinder. This will be done in the next
section.
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e, Arrays of Radiator s on a Cylinder

1) Axial and Circular Array of Radiators

In the previous sections we have derived the radia-

tion fields due to an axial slot, a circumferential slot, and

a hole that is excited by the waveguide mode in either the

z or ¢ directions. In this section we shall derive the

field due to a rather arbitrary array of such radiators on

a right circular cylinder. The array may consist of any
combination of holes and slots with the exception that at a

given value of z on the cylinder (axial position) the ring

array in the circumferential direction is equispaced and

consists entirely of crossed slots or holes. Such a general-

ized array is shown in Figure V-7. In practice the array
would probably consist of identical elements in the z-direction

except for their conductance values and the pattern effect

of the z-arraying would then be accounted for most readily

by a linear array factor.

For a circumferential slot that is symmetrically located

at ¢ = 0 and z = 0 on the cylinder (see Figure V-8a)
we have found the radiation field as

and
c c (o, ¢)E8 = Vc f8

c c
E¢ = Vc f¢(e' ¢)

• c c
The functlons f^ and f_ are those actually found in•
Sectlon c. The excitation coefficient V c is generally

complex and depends on the excitation and the geometry

(resonance or admittance characteristics) of the slot. We

will assign values to V c and the excitation coefficients

of other radiators in the array later.

The axial slot (Figure V-8b) that is symmetrically oriented
along the x-axis at z = 0 has a radiation field

and
0

A (8,
E_ = VA f_

where f_ is derived in Section c and V A is the complex
excitation coefficient for this slot.

¢)
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FIGURE V-8a. CIRCUMFERENTIAL SLOT
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and the rotated field is given by

(e, ¢ -
_mp = _rr_

mp _Sp)

In the above formula the following notation is used:

For a given axial position we designate the z coordinate by

z = +o z
& s

The value of z s will be fixed and p will be generally,

but not necessarily, an integer. A given value of p
therefore designates a given element "ring" of slots or

holes as illustrated in Figure V-7. For any given ring

(given p) the elements are spaced at angular intervals
, and m_ _.. from 0 = 0 The constants m_

sp .°F " F
are integers v_rylng from mp = 0 to Mn where

(Nip + I) 0sD = 360 ° . Hence the slots (Sr holes)

areequally spaced in 0.

For a slot or hole at the axial position z = p z s we have
as the radiation field

mp p mp

(e, ¢
- mp Osp) _-jkPZs sin 0

This defines the radiation field for a slot or hole that is

located at an arbitrary position on the cylinder with

respect to the radiation field for the slot or hole located

at (z = O, 0 = O) on the cylinder.

The excitation coefficients V A, e_n,c V z, and V¢ are
fixed for a given ring element." H e we designate them

by V A , Vr" , etc. For a desired circularity for the
radiatlo_field x_Pa direction normal to the slots or holes

we can relate VAmp and VCmp for the crossed slots, or

Vz-- and V_ for the holes If the circularity of*L* _m "

radiation in thls_irection is defined by a constant _p
then either V A or VC need be specified, the_

remaining coefflc/'n_entbeingmdPefined by the first and _p,

The same situation holds for Vzm p and VOm p.
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For a symmetrically located hole in the guide we obtain
similar results for the z-oriented excitation:

z z

ze = Vz fe (e, ¢)

and

z {e, ¢)

and for the _-oriented excitation:

= 0

z zwhere fS' f_ and f are derived in Section d.

In what follows we will show how VA and V c are
related for a given far field circularity. Similarly we

will also show how V_ and V z are related so as to
achieve a specified circularity in the far field normal to
the hole. In addition we will show how the conductance of

a given hole or crossed slot may be entered into the form-
ulation for the radiation field.

First of all we may eliminate the R variable from our

formulas since R will be a constant in our field calcula-

tions. We designate

c
,,c,,ol = co,

Similar substitutions may be made for
to obta in

A z _,_-'O' _-"O' , etc.

A z ¢
f;,, etc. ,fo' fo'

When the z coordinate of a slot is held fixed and the

slot {or hole) is rotated in the + _ direction, the radiation

field is also rotated with respect to the coordinate system

V-31 R-2870-3582
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We will define the constant _ with reference to the

waveguide wall currents whichPwere derived in Section b.

We recall that wall currents were given by

3_ = j A e -j ¢ sin K!'z z

and

3T B e -j _ cos z= - K'.'
z 1

The ratio of the z- directed excitation to the _-directed

excitation of either the slots or holes is therefore given
by

Hence the circularity of the slots or holes de__ends upon

the z position {with respect to the short). (_p represents
the circularity and we find

= l for right circular polarization
P

ol for left circular polarization
P

_p = 0 for _ polarization

_p = 03 for 8 polarization.

The above polarizations are in a direction normal to the
hole or slots.

The relationship between VAm and VC is now
P p mpp

readily found. By the above definition for (h we have
P

_p = E o (T/'/7, 0)/ j E_{TI-/2, O)

where E_ and E@ are the total field
slots or _ole. We find therefore that

-t/_p = E_ + E_A

j {E_ + E_)

components for the
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where the superscripts C and A designate the fields due

to a circumferential or axial slot on the cylinder. Substitut-
ing further we find

C

VAmpp

and finally

VAmpp =

VCmpp

-j A

We should not_ that by ( TF/z, 0) we mean (0 = "rr/z,

- my _s v| = 0). Hence (Tr/z, 0) is normal to the

slot or"hole br Jalternatively expressed, it is normal to

the cylinder axis in the direction of the slot or hole.

The relationship between V#mpp and VZmpp

of _ is similarly defined and found as

Z

('u-Iz, o)
V mpp _ .j
Vzmpp

('n-/z, o)

in term s

and in terms
We have now expressed VAmpp V_mpp

of VCm_ _ and V z respectively. We must now
i_, mpp

define the amplitude phase of either VCmpp or VAmpp

and V_mpp or Vzmpp in terms of the slot conductances

and rotationalposition. The phase excitations of the slots

or holes wi/l vary as exp (j _) around the cylinder. We

will assume that the power radiated by an element ring is

given by the conductance defined in the usual way and des-

ignated by gS or gn for all the slots or holes in the ring

element, respectively. The values that g_ or gh should

Iu

be given is determined by an appropriate array synthesis

theory (see next section) if more than one ring element is

used. As the computed and experimental re suits show,
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one ring element gives excellent omni-coverage so that
an array will not be necessary for most applications.

The voltage excitation coefficients, normalized, for the
cross-slot rings are given by

Mpv m,p 0,I
or

= 1 g

v pp A
¢ o

eJ mP 0s p sign {-cos K_' p Zst

-jmp0sp sign (+ sin Ki' p Zs_

VA is found from VCm or vice-versa as discussed
earn_. The factors signs pP ( ) are either +1 or -1

as indicated. They are necessary to account for the alter-
nation in sign as the slot or hole position varies by a half

guide wavelength in the z-direction. The normalization
is arbitrary and chosen by the division of the normally dir-
ected (7T]2, 0) field magnitude. In general all the radiators
on a given circle (i. e., a given value of p) are assumed

identical. If they are not then A]gp/Mp will be a function

of mp and must be adjusted accm:dingly. This will ordinarily
not be the case for omni antennas.

The phase and amplitude of and Vzmp p is definedand found similarly as V¢mpp

VZmpp P

where we designate

' = sin
P

and

(_,. i_ - CO
s

I!

K i P z s

II

K. pz s
1
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G
Femp p =

F_mpp -

The total field for any one crossed slot or hole is now

easily found as

 rnZR kR)EOmpp

C

VCmpp _Omp (0, _-mp
sp)e- j k p zs cos 0

,__mp_spJ_jkp z s cos 0

=  z zRej AEOmppF A
Ompp

F_mpp

F_mpp

FOmpp

= Ompp

(ZTrZR_J_) E z= . Ornpp

= 0

A

= VAmpp _@mp

Z

= V Zmpp Omp

= V zmpp _mp

(0, ¢-mpCsp) e-jkp zs cos O

(O, ¢-mpCsp) e-jkp zs cos e

(e, ¢-mpCsp )e-jk zs cos e

F¢
Ompp

¢
F_mpp

(rrrzR_kR) ¢ : oEOrnpp

= VOmpp _-_rnp
(0, ¢-mp_sp) e-_kp z s

cos 0

The total field for an arbitrary array of slots and holes

on the cylinder is then given by
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and

mp = 0 8mpp

For a given ring element (a given value of p), if the rad-
iators are all slots then

FZ_lmpp, F_mpp, and F_mpp are zero. Similarly,

if the elements were all holes in a given ring, then

F_mpp, F_mpp, and FemppC are zero.

If we designate the total right circularly polarized field

as F_ and the total left circularly polarized field as
FTL we find:

T T T
(8, _) = E_. - j E 0F R

and

T (e, _) TF L = E 8 - j E_

If we normalize these fields to the value at

(e, _) = (-n/z, o)

we have as the total right and left circular polarized fields:

and

ERT (8, ¢) = FRT (8, _) F T (77"/2. 0)

T (e, #) T (9, ¢)/1 T [E L = F L F L (71"/2, 0)
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2) Array Synthesis Technique,s for Omni-Patterns

a) General Discussion

In order to define the general type of pattern

which we seek, refer to Figure V-9. We seek a circularly

polarized pattern which is omni directional in ¢ and a

sector beam in 8. Ideally, the sector is uniform from

-0 0 to ÷{}o with a sharp cutoff or skirt at 0 = _-9 o.

In order to obtain an approximation to this pattern we will

array a group of elements, 2N + 2 elements along the

z - axis of the system. There will be _N + 1 elements

with identical patterns, the element pattern, which was

essentially as shown in Figure V-10, assumed nearly
independent in ¢.

It can be seen that a single element will actually provide
a fair approximation to the desired pattern (element pattern

synthesis and analysis as discussed elsewhere in this report).

The 2N + 1 elements to be arrayed will provide a much

sharper skirt than the single element. However, this will

be possible only with some sacrifice to the flatness of the

secto_ 1O] < e o. This is a consequence of the fact that

the array factor must be symmetrical about 191 = q'/'/2.

In other words, a possible array factor will apI_ear as

sh?wn in Figure V-1 la, with symmetry about _/J = 0

{ _J = O - 7r/z). Figure V-lib illustrates a sector beam
with th,s limitation, the hole at 0 = O. For the waveguide

feed system to be used, this array factor symmetry is

essentially inherent in the system.

With an array factor such as is illustrated in Figure V-1 la

and the element pattern of Figure V-10, we will achieve a

sharp skirt, but also obtain a "hole" in the 0 = 0 direction

of the pattern. In order to "fill in" this hole we could add

an additional element at the end of the array, although the

element factor of the array elements will "fill" this hole

to some extent. The position, amplitude, and the phase of

this single end element are left variable. This element could

be excited by some other method if the optimum conductance

became larger than tolerable here. Since the remaining

ZN ÷ 1 elements require a shorted waveguide, this conduct-

ance must be small if excited at the end of the guide. In

any case, this element pattern will substantially favor the

8 = 0 direction and be expected to "fill up" the "hole" gen-

erated by the array factor. It is thus clear that for N large,

the power radiated by this end element must be increased.
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Hence in general it must be recognized that some alternate
excitation (other than suggested above) is necessary.

In the event that the desired sector coverage is that shown
in Figure V-11b instead of that in Figure V-9, then only
ZN + 1 elements are used and the problem simplified.

There are four important synthesis methods that are useful
for this problem. Each method has certain advantages,

depending d g. oe
nat zone (Ig4 < I_l ), the skirt sharpness at _// = ±" _t/o,

• Uthe number of eleme_ats, and the exact element pattern

re(e). (We will assume that fe(G, _) = fe(e) for all
practical purposes in the synthesis). The methods are
the Maximally Flat synthesis (Butterwork circuit analogy),
Tchebyscheff Derived synthesis, least square (Fourier)

synthesis, and N-point synthesis.

The N-point method makes the approximate pattern go
through precisely N points of the desired pattern if N
elements are used in the array. That is, N amplitude coef-

ficients of the array are found by the above requirement.
A rather simple matrix inversion is all that is required
here. The method is not very powerful, since the behavior

throughout the rest of the pattern (points other than the N

points) are not controlled and no overall behavior is determined.

The maximally flat and quasi-smooth synthesis methods
are described in several papers by Ksienski 19, 20 They

are mentioned here because of their suitability to the omni-
directional pattern objectives. In essence this method is
an N point synthesis for the pattern derivative as opposed
to the pattern itself. This synth#sis can lead to a very

smooth array factor for [_J[-_ [_o[ but also leads to a

minimum slope at [_[ _ '[_ ]_"'o

A somewhat better compromise between slope and smooth-
ness can be achieved by using a Tchebyscheff derived pat-

tern (see Reference 19 for example). If the desired sector
beam is that in Figure V-12a, then the desired derivative
pattern is the impulse pair in Figure V-lgb. If each-impulse
is approximated by a Tchebyscheff pencil beam, then the
resultant sector beam will not be smooth, but will have an

almost equal ripple. The greater.the ripple magnitude

allowed, the greater the slope at = I _tence gen-
erally for a given number of elem_ht's this r_nthesis method

will give a good compromise between smoothness and
cutoff slope . The method has the advantage also of being
very easy to apply, since tables of Tchebyscheff polynomials
are readily available.
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The final method which was mentioned, the least square
or Fourier synthesis, will be treated in more detail to

demonstrate the applicability of all of the methods con-
sider_d. This method generally yields the sharpest skirt
at l_]" =- dJo ' but also has the greatest overshoot away
fro_l[_J[ __I"_l, . For a very small number of elements

(whichJ_iil pr_'b°bly be the most practical case for the

omni-directional application) this synthesis appears to
yield the best compromise pattern when considered with the
element pattern. The detailed discussion follows.

b) Fourier or Least Square Synthesis

Consider the rectangular pulse shown in

Figure V-13. This is a sector__ beam extended periodically
in the variable u = q]-sin 1L/.

The Fourier series for this function is

co
V

f(u) =
n=O

where C n : IIz

(   nuO)oocos n u

Now consider the pattern produced by a (ZN + I) element

array symmetrically excited by the real coefficients An:

N

fA(_ ) : __ An _ikdn sin

n_ 2A n _- +=1 Z
A o

so fA(u)

N

= > G A cos n u

n=0_ n n

where U = k d sin_ = 2.'7"f-/ X d sin_= _sin

when d = )k /Z.

when d = Xg/z and

We will not consider the case

kg _ X (Xg only slightly _'k),
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but certain not too serious modifications must be made

in the following when d has this value.

It is now immediately clear that if we choose

An = u° ( sinnu°)./7- n Uo

we have a least square fit to the sector beam.

We will now demonstrate that for skirt positions which are

desired for maximum coverage with the omni antenna and

for the particular feeding transmission line (circularly

polarized wave in a shorted cylindrical waveguide) these

feeding coefficients are readily obtainable. That is, for

uo = "iT (sin 70 °) _ 0.94 37"

the phase of the A n alternate by 180 ° with n and this is

precisely what occurs in the feeding transmission line.

This is true as will be seen up until a maximum n only,

but this maximum n is much larger than will be practical

for the omni antenna. Figure V-14 demonstrates this effect.

It is clear that the sign of A n continues to alternate until
n is approximately Z0. This value is found easily by

M = max n = 77" = 1
T[- Uo "U?'V6- _ Z0

That the above result occurs for the other methods of

synthesis is easily verified by noting the results in

Reference 19. See equation (11) for the Maximally smooth

synthesis result, equation (56) for the quasi-smooth synth-

esis result, and equation (48) for the Tchebyscheff derived

result (all in Reference 19). In each case we have the

alternating of the signs of the coefficients A n which lends

itself quite readily to realization with the circularly pol-

arized shorted cylindrical waveguide. Finally, note that
the closer

_o ---_ "/7"IZ,

i.e., the greater the range desired, the greater M,
and hence, more elements can be used to achieve the

greater coverage. Although the tolerance and design com-
plexity (from a practical point of view) increases with more

V-46 R-3870-3582



..... ;_ w •

FIGURE V-14

FEEDING COEFFICIENTS

FOR LEAST SQUARE-FOURIER SYNTHESIS

V -47 R-Z870-358Z



_e

elements, in principle we can achieve as great or
complete coverage as desired with as sharp.a skirt as
desired by increasing the number of elements. (Of course,
there is an open end to this limit since complete coverage
is theoretically impossible). For a given number of
elements, however, some compromise between smoothness
and skirt sharpness must be decided upon before a synthesis
method is chosen. For any choice or compromise there
is a useful easily applied synthesis method to determine

the coefficients A n .

In each case, however, we do require (usually in the Maxi-

mally fiat synthesis and always in the Fourier synthesis)
that the center element and adjacent elements have the
same phase. This can be achieved by two antennas operat-

ing into each other as illustrated in Figure V-15.

In this case we must use the equivalent even number of

elements for the array. We may simply interpolate for
excitation coefficients,

Theoretical Computations and Some Experimental Results

1) General Discussion

This section presents results of machine computations
of the formulas developed in the previous sections. In addi-

tion, some experimental results are presented for compari-
son. A more complete presentation of experimental results
is presented elsewhere in the next section. Since the theory
for slot radiators on an infinite cylinder is essentially an

exact theory, the theoretical results in general represent
the "best" or the "ideal" patterns that can be achieved with

this type of antenna. A noteworthy exception to this other-
wise valid viewpoint will be presented later when the eleva-
tion patterns (0 cut) for an eight slot ring are discussed.

Results are presented only for a single ring array of slots.
As will be explained in the discussion of the eight slot ring,
much of the advantage obtainable with an array of rings can
be obtained from a single ring when various diffraction and

scattering effects are utilized to advantage.

The calculations were run to determine the omni-pattern

(0 = 90 °, ¢ varies) and elevation pattern (¢ fixed, 0
varies), as functions of frequency, guide radius, radiator

shape (hole or crossed slots), and number of radiators in
a given ring.
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Results are presented for one and eight elements in a ring.
Computations for other numbers of elements, different

free space wavelengths and several guide radii were per-
formed to determine the effect of these parameters. Ampli-

tude patterns for right circular and left circular polariza-
tion and some phase patterns are also illustrated. Although
the illustrations are in general self-explanatory, certain
particularly interesting festures will be pointed out in the
following sections.

Z) S'm_le Crossed Slot and Hole Patterns

We let the single crossed slot or hole be centered
at # = \0 ° on the cylinder. Since the pattern variation

from _A 1 = 4.9,Z" to /k5 = 5. 91" is not great only
the A 3 = 5.36 wavelength is computed. In all cases
we assume a guide radius a = Z. 0" and inside guide

radius a:_ such that a - a i = 0. 065" (wall thickness)
unless otherwise specified on the diagrams.

Figures V-16 through V-19 present the single element

results. The elevation patterns in Figure V-16 illustrate

the effect of the cylinder as compared to a slot on a ground

plane. The # = 180 ° pattern would be identically zero

if the cylinder radius were infinitely large. The ¢ = 0 °

pattern differs in the two cases mostly in the polar regions.

Note the asymmetry about 0 = 90 ° . This is due to the

phase variation e-J$ across the circumferential slot.

This asymmetry is evident in the other figures also.

{Note especially the 0 plane patterns in Figure V-17. )
The ground plane pattern in Figure V-16 is given for the

infinitesimal crossed dipole which has the elevation pattern

Z
P(O) = I0 lOgl0 (I + sin 6)

Figure V-18 shows the @ = 90 ° plane (omni) patterns

for a single crossed slot at _ = 0 ° The differences

between _ <0 and _>0 are evident; however, they are
not excessive.

The variation in omni plane phase for a crossed slot at
= 0 ° is shown in Figure V-19.

3) Multiple Crossed Slot Results

Computations were run for multiple numbers of crossed
slots in a circumferential ring. Equal spacing was always
as sumed.
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For four crossed slots the computation s were compared

with experimental results and it was established that good

agreement could be obtained. However, the omni plane

(0 = 90") right circular pattern has a maximum to min-

imum variation of 11 db. Obviously, this case is not

acceptable as an omni antenna.

Calculations were run on six and seven sets of crossed

slots and the six slot case was experimentally tested.

The omni variation was approximately 1 db calculated

and 2 db measured. Elevation patterns were also accept-
able, but six sets of crossed slots were not sufficient to

obtain near 100% coupling from the guide.

It was determined that a maximum of eight sets of reson-

ant length dumbbell slots could be placed in a single ring,
so it was decided to restrict further work to this case.

The eight slot ring patterns do not differ in essence with

the seven slot ring results with the single exception that

now both the right circular polarization and left circular pol-

arization omni patterns are essentially perfectly flat

as shown in Figure V-20. The elevation patterns are also

illustrated here with no significant changes from previous

results. It can be seen here that the left circular polariza-

tion omni pattern lies at exactly 20 db below the right cir-

cular polarization pattern; this is the "average" difference

in level when less elements are used in a ring, but fewer

elements allow large variations in the left circular pol-

arization pattern and small variations in the right circular pol-
arization pattern.

Figure V-Z1 illustrates the omni phase patterns for both

the left circular polarization and right circular polarization

cases. A perfectly linear variation of _ degrees in phase

per _ degrees in angular position is noted as expected

for this case. The right circular polarization and left

circular polarization patterns differ in phase by a constant

of nearly 30 ° . Since, of course, the left circular polariza-

tion amplitude is at -Z0 db with respect to the right circular

polarization amplitude, the total field is essentially right

circularly polarized at the right circular polarization phase.

Figure V-Z2 compares a typical experimental elevation

pattern with the theoretical ideal. The actual experimental

antenna model is illustrated in Figure V-23. The experi-

mental pattern, it must be noticed, is very similar to a very

long array of ring elements (15 to 20) whose excitation is

obtained by a Fourier synthesis method. The oscillations
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are typical of such a synthesis. So is the very sharp - ,:
•.. skirt_:i e,_d_ed range:to.._p_o_tet y i 68 ' _ ,, ..........

' ' FinSlty, "_e decrease in the height of the polar lobe
at 0 ; 0 ° is also a possible result of the Fourier syn-
thesis, although the experimental pattern in Figure V-22

has decreased this lobe to an ideal level that may be very
difficult to achieve by an array factor.

A simple illustration of how the diffraction effects have
been utilized is shown in Figure V-23. Consider a

"central" ray emerging from the ring at an angle 0"
with the polar axis. This ray is polarized essentially
left circularly polarized if we take 0" as 171.6 ° as

illustrated in Figure V-2Z. Hence the ray reflected at
0' is essentially right circularly polarized. If we design
the conical shield for 0 = 1OZ. 8" to extend the eleva-

tion range and sharpen the elevation south ._olar skirt,
we obtain the experimental pattern illustrated in Figure V-32.

Henc_p the shield serves the dual purpose of providing a
tran:_ttton to the vehicular support for the antenna and
also extending the range of the elevation pattern,

.... ...... ' The-calcuLated and measured isotropic levels compared
....._" .hearly/identical are shown in the figure. For -4 db gain,
• : the e_va_on range is experimentally 0 = _167 ° . The

• i: _:' '. , the0re'_c.ai range is 0 = _156 ° . At the sacrifice of

: Fourier_: mynthesis for a very long array, we are able toi;.i II!. ! i!i.:'I S_e!'ri_e.'and increase in cross polarization, as in the
reduce_angle of the null region of theright circular

_ polarization pattern.

The theoretical coverage factor (C. F. ) is 95.8% and the

diffraction increased C.F. is 98.7% (both for the -4 db
gain contour).

Also shown in Figure V-Z2 is a measured pattern recorded
with the conical reflector covered by absorbent material.
Much closer agreement with the theoretical is evident.

Some ripple is still present and the average gain is
slightly less than the theoretical. The -4 db gain coverage
extends only to 150 ° , which is equivalent to a C.F. of
93.3%.
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2. Prototype De_;elopment

!:_,i.i , " . .:-.' i _Tlie .._bm'atory.:te_t:.model :gfithe omni a_ntenna has three main
sections, as shoWh in Figure V-24.

I) Mode Launcher

Z) Polarizer

3) Radiating Section

a. Mode Launcher

This section describes the unit used to launch the linearly

polarized HII mode and absorb the cross polarized reflection.

/

• ,!. r

The mode launcher is a simple probe transition from coax

(Type "N') to circular waveguide with an inside diameter of

3. 870 inches and a wall thickness of 0. 065 inch (4 inches

O.D.). This size circular waveguide was chosen for use

throughout the antenna because it was readily available com-

mercially and would support the H I I mode over the necessary
bandwidth without propagating any higher order modes. The

probe transition is the simplest type that could be employed,

hence, it has reliability and weight advantages. It is a narrow

band and tow power device, but adequate for this application.

_0Bulti_g VSWR was 1.15 maximum. Other more sophisticated

deotgns coted be substituted if the VSWR less than 1.:10 were
def.,red: _ :_
• '
_e probe (_ansition furthest from the base of the antenna is

:terminated W_th a 50 ohm coaxial load obtained from :_ectronic

Standards _Orporation of America. This terminal is s',rnply
to absorb any reflected signal at the transmit frequency I
which is cross polarized to the input terminal. Tests dis-

cussed later show that the portion of the transmitted power
reaching this load will not exceed 5 per cent. For 50 watts

of transmitted power, the load should be capable of dissipating

2.5 watts. The septum separating the two probes was used
to assure =*Z0 db isolation between them to allow accurate

measurements of reflected cross polarized power. Once the

entire antenna is designed, the two probes can be placed in

the same cross section, resulting in a smaller mode launcher.

Also, if the reflected cross polarized energy at the transmit

frequency can be held to approximately -15 db or less, or if

absorption seems impractical due to heat dissipation, the

loaded terminal could be eliminated. The reflected energy
will then be retransmitted as left circular polarization, but

due to its reduced magnitude, it will have no appreciable

effect on the desired right circularly polarized pattern. This
fact also shows that a failure of the load will not cause a fail-

ure of the antenna. At worst, there will be only a slight degrad-

ation in the polarization characteristics of the pattern.
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i_ ' -,4 • r '_

..... .,. F!.gure V,Z5 is a view!0okin, g into the output end of the

.... ,.mo.de la_.,.: _0_i lhe orthosonal probes, load, "
..... • and isolation 'septum. : ''

b. Polarizer

A 90" differential phase shifter is placed at 45" to the

excited linear H ll mode to transform it to a rotating,

or circularly polarized, mode. The design was adapted
from the square waveguide polarizer described by Simmons ZZ.

A short study was performed to determine the iris config-

uration that would yield susceptance versus frequency curves

of equal slope for the two orthogonal components of the input

mode. Various radii and straight edged irises were investi-

gated. For the range of susceptances (± j B/Yo) desired,

in 4 inch guide over the 2100 to Z300 Mc band, an iris with
a radius of 0. 830 inches was found to have the characteristics

shown in Figure V-Z6A. The nearly identical slopes shown

for both +j B/Yo and -j B/Y o at various iris depths is

necessary to assure a nearly constant 90 ° 'differential phase
shift across the entire band and to maintain low VSWR.

A three section phase shifter, with ±15 ° phase shift per

section, was designed for Z185 Mc, in accordance with

Reference ZZ. The Z185 Mc was chosen as the design

I -I B/Yolfrequency because +j B/Yo[ _" -j medium
depth iris. The following equations were used.

= 360°/ )kg

wher e

0 = 180 ° - Z/@/

Cot _ = B/ZY o

Ao

/
kg

= phase shift per section = ±15 °

= distance between irises

= guide wavelength
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Figure V-24 gives the details of the resulting design. The
unit was fabricated and tested with the following results:

i ,, f

Axial Ratio of Rotating Mode

VSWR - Mode Launcher and
Polar izer

Frequency

2113 Z200 2295

1.1 db

I.Z6

1.0 db

1.17

1.0 db

1.13 ,

C.

The polarizer and mode launcher have been aligned in angle
for the best electrical results and pinned together to prevent
misalignrnent. A view o_ the polarizing irise_ is shown in
Figur e V-26B.

Radiatin_ Section

The radiating section consists of eight sets Of dumbbell
loaded23 crossed slots 24 equally spaced on a circumference

Of the waveguide. Their distance from the short circuited _- ....

end of the waveguide (z) has been set so that the req_lents
for circular polarization are met at the slot CenterS. _efer
to mode" theory section.) Of course, the z distance cabot

be exact at both oper_/ting frequencies, and the theo_ymtsJunles
that the slotm in the waveguide wall do not disturb the internal

currentS, which they must_o produce coupLin.g, so perfect
circular polarization cannot be obtained..

Several slot and hole configurations were studied to determine

Which would best meet the requirements of coupling the max-

irnun_ circularly polarized energy at the two operating fre-
quencies witliout appreciably distorting the internal mode.

All hole configurations investigated were unsuccessful for the
following reasons:

I) A hole large enough to produce substantial coupling

is no longer round when drilled on a cylindrical surface.

2) A resonant hold (diameter = _/ 77-) only has

approximately one-fifth the conductance of a resonant

crossed slot, so high efficiency could not be obtained.
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3) Holes approaching resonance greatly affect-the
axial ratio of the internal mode.

Although holes have the advantage of being easier to machine,

it was concluded that crossed slots were necessary.

The theory has been developed for slots in axial and circum-
ferential directions. These have two disadvantages:

I) The two slots of a given crossed set are different
since one is cut on a flat surface and the other on a

curved surface.

Z) The resonant length of a circumlerential slot
limlts the number of crossed slots in a ring to six.

Measurements of power radiated by a single crossed
slot of resonant length indicate that maximum coupling

of six crossed slots would be approximately 70 p_ cent.

To appr_ch 100 per cent coupling from one ring element,

it must cozttain eight crossed slots. The crossed slots can
be oriented at 145 ° to the waveguide axis without aHecting
the radiated field, since the theoretical field is esserftially
the same f0r holes and crossed slots. However, the max.

___ that can be obtained with eight sets of
_'_. cr_sed slots on _ four inch diameter waveguide is

___ty!_'_, 0 Inqhes, allowing _ minimum spacing

_t_.een_S1_. :_6inc.e a'resonant length is approximatel_y
_.. S Iziches,_:_e .1_ethod Df loading the slots to increase
:their effe_ttveIe_Kth is necessary. Dielectric filled slots _ "

_¢b_tidbe tlned,/and would be desirable if a sealed wavegttide
• _were :needed, but for space applications, dumbbell slots

are superioi _.

Itwas also noted that the on-axis axial ratio of the field

radiated by et single crossed slot is affected by the slot
width and inclination angle. That is, the slot coupling to
the two components of the circularly polarized mode are

functions of the inclination angle and width as well as distance
from the short circuit. Still another factor to be considered

when positioning the short circuit for optimum bandwidth is the
phase shift that off resonant slots produce in the internal

mode. For this reason, the i_hysical location of the short

circuit is usually not at the }_g/8 position predicted by the
theory when the slot lengths are near resonance. Simmons Z5
has shown that crossed slots much below resonance have a

phase shift characteristic that is nearly zero and constant

with frequency. Hence, these short slots were used to study

the effects of inclination angle and width.
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For slot widths of 0. Z50 inch and several sizes under 0. 100

inch it was found that inclination angles greater than ±45 °
were necessary to obtain on-axis circular polarization.
For widths of 0. 100 inch and 0. 120 inch, an inclination

angle of ±45 ° yielded nearly circular polarization on-axis.
Noting that angles greater than ±45 * would restrict the

lengths of the slots still further and due to the poor axial
ratios obtainable for slot angles less than 45", it was dec-
ided to use slot widths between 0. 100 inch and 0. 120 inch

oriented at ±45 ° . The longer slots physically possible with

less than ±45* inclination might be undesirable anyway due
to the proximity of the short circuit.

Eight dumbbell loaded crossed slots were fabricated as

shown in Figure V-27. The power radiated was measured

by noting the VSWR on the input terminal and decoupling on

the cross polarized terminal. Waveguide losses were neg-
lected. The _rror in this assumption was determined to be

apprO_t,e|lf I per cent,by short circuiting the slots and
no_g t_b_t Over 98 per cent of the input power was returned

to ghe two terminals. This'established the two-way loss at
less than Z per cent. (This is also an excellent method of
temtixtg and tuning the polarizer. The better the axial ratio
¢x_+the poIariser's output, the more energy is returned to the

• crOl4_ir_¢I terminal when the slots are shorted. )

• :The elght_+s_t_:of slots of the type shown in Figure V-Z7 were'

• / "i_i_ i_creasingd_crements by drilling out the holes and

t___i_p+_ower :_ad!ated was measured each time. Figure V-Z8
_$h_ :th&_:rest*lts. When the diameter of the holes reached

+0:312 inch, the remaining wall thickness was judged to be

at+a mlnirnm_ and further increases were made by using
square ho]Le_ The measurements shown at diameters greater
than 0.312 inch are really for the equivalent diameter that

would yield the same total slot circumference as the square

holes that were actually used. Figure V-Z9 is a photograph
showing the detail of the resulting slot configuration. Dimen-
sions are given in Figure V-24. It must be noted that

extreme care must be exercised to maintain identical slots

with good symmetry. Also, the short circuit must be per-
pendicular to the axis.

It can be seen in Figure V-Z8 that an electrically resonant
slot length was approached, but not quite reached. Further
lengthening of the slots was not possible because the short

circuit had to be moved closer than its theoretical spacing
(I. 15 inches) to compensate for the slot produced phase
shift and maintain circularly polarized radiation. As seen

in Figure V-Z4, the short is nearly flush with the slot ends
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EXPERIMENTAL DUMBBELL LOADED CROSSED SLOT
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at 0. 755 inch from the slot center. (This actually increased

the coupling by capacitively loading the slot, and will be
discussed later.) Also, it is this compromise between slot

length and short position that is responsible for the higher
then theoretical cross-polarized pattern. It is also evident

in Figure V-28 that a perfectly resonant ring element of
eight crossed slots at Zg95 Mc would still not couple 100 per
cent of the power at Z113 Mc. Fortunately, the high power

{transmit) is at the higher frequency and the greater coupling
can be obtained where it is more important.

Theoretically, introducing a tuning element (susceptance) at

the proper point in the guide should enable one to tune the

non-resonant slots to obtain an impedance match and assure

maximum po_er radiation. However, the guide wavelengths
for the two operating frequencies in this size circular wave-

guide _re subs_ntlall7 different. Hence, no position for a

._1_ingelement could be found that would matc._ one frequency
•withoumismtching the other. Also, the •magnitude of th e
mismatc]_t each frequency is substantially different, so
this approach was dropped.

Once slots as near resonant as possible were obtained and

the short positioned for circularly polarized radiation in
the om_ p_ne_ a plot of antenna efficiency versus frequency
was made. See Figure V-30. Assuming waveguide losses
=to be ne_!ble, efficiency can be calculated from

100%

where PRefl. = power reflected as input VSWR

PLoad = power into cross polarized load

It can be seen by comparing Figures V-Z8 and V-30 that

greater coupling was obtained after the short was adjusted

for circularly polarized radiation. The drop in efficiency

near 2170 Mc is due to an interaction of the impedances
{resonance) of the slots and polarizer. It is therefore a

function of the length between the slots and polarizer. This

length has been chosen to move the null away from ZII3 Mc.

The resulting input VSWR to the total unit is 1.Z0 maximum

in the receive band {gl 13 ±5 Mc) and I. 32 maximum in the

transmit band {2295 _5 Mc). The orthogonal terminal mini-

mum decoupling is 8.0 and 13.0 db in the same bands, res-

pectively.
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Due to the rotating standing wave and the circular symmetry

of the eight crossed slots, the angular alignment of the

radiating section relative to the polarizer is unimportant.

The length of the truncated waveguide is chosen for optimum

pattern performance as discussed in the next section.

Assembly Performance

The three main sections of the omni antenna were assembled

as shown in Figure V-Z4. This much of the omni antenna

assembly is sufficient for checking input VSWR and orthog-

onal decoupling. However, when the load and a detector

are attached to the terminals, the patterns are affected by

the reflections. Hence, the conical housing shown in

Figure V-31 must be used to provide a quasi-smooth transi-

tion from the 4 inch diameter to approximately 8 inches and

tO maintain circular symmetry. The 8 inch maximum dia-

meter_vas chosen to mate with the top of the Ranger' space-

craft. For other installations, this size could be changed.

The flared section was experimentally positioned to produce

an optimum phase for the reflection of the left circ_ar energy

and increase the coverage as discussed in the theoretical sec-

tlon of this report. The spacecraft mounting flange detailed

_qre-V_32 also serves the dual purpose of supporting ......

_im large end of the conical housing, and should be employed
even _when the antenna is not mounted on the spacecraft.

F! llttle V-33 shows the entire omni antenna assembly. The

Type "N" terminal is for test purposes only. Normally, the

oilier surface is completely smooth.

Figures V-34 thru V-37 are typical measured patterns of the

free space omni antenna as shown in Figure V-33. Figures

V-34 and V-35 are 0 plane patterns for Z113 and ZZ95 Mc

respectively. Right and left circularly polarized patterns

are shown and can be compared with the theoretical pattern

of Figure V-20. Comparison shows the right circularly

polarized pattern to contain an unpredicted ripple and to have

an average gain about 2.0 db below isotropic. The ±2. db

ripple means the minimum gain will be as low as -4 db from

isotropic (exclusive of the null region, when 181 _ 180 °).

The gain at {) = 0 ° is greater than isotropic, but is not

as high as theory predicts. Also, the cross polarization

(L.C.P.) in the region 35 ° _I0[ _ 140 ° has higher gain

than predicted.

The high cross polarization is due to two effects:
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1) The short circuit in the waveguide cannot be

perfectly positioned for both frequencies. Due to the

compromise short position the crossed slots are

excited with slightly elliptical currents. (The short

was positioned to favor 2113 Mc, since the slot length
favors 2295 Mc. )

Z) Diffraction from both ends of the antenna as

well as from the conical housing creates some cross

polarization. When the antenna is mounted on the space-
craft the smooth transition reduces the end effect from

the base of the antenna.

The high cross polarization is the chief reason for the right
circular gain being less than the theoretical maximum.

The radiation efficiency of 85 to 95 per cent accounts for

the remaining loss in gain.

The reduction in gain at @ = 0° is due to the dummy length
of waveguide that extends beyond the short circuit. This

length was determined experimentally to be optimum. Theoret-

ically, the waveguide should be infinitely long, but it must be

truncated in a reasonable length. Truncation near the short

circuit produced higher gain at O = 0 °, but also produced
6 db nulls at [@J = 36 °

g plane patterns at other values of _ are essentially the

same as those presented here, indicating that the expected

excellent circular symmetry was achieved.

Figures V-36 and V-37 are omni plane patterns (8 = 90 ° )

at 2113 and 2295 Mc. Theoretically, the minimum obtainable

ripple is less than 0. 1 db. Practically, the ellipticity of the

internal mode and slot asymmetries (tolerances) limit the

to range reflections and antenna mounting structure contribute
the remainder of the 2 db ripple. These errors are esti-

mated as ±1 dbin the isotropic to -4 db absolute range.

The estimate of measurement error was made by comparing

several @ plane patterns recorded on various length ranges

and also by comparing a pattern with the mirror image of one
recorded with the antenna inverted 180°

The measurement of isotropic level gain is also difficult
and is estimated to contain ±0.5 db error. Two horns with

different gains were used and the results were compared to

the isotropic level obtained through pattern integration, as

adjusted by radiation efficiency. Agreement within ±0.5 db
was obtained.
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A complete set of patterns for both frequencies, both polariza-
tions and several @ plane cuts is presented in Appendix I.

Also included in Appendix I is the results of a pattern study
for this antenna mounted on a mockup of a Ranger spacecraft.

e. Conclusions

The hardware development program successfully demon-

strates the validity of the theory of this antenna type. Extremely
good agreement was obtained between theoretical and measured
antenna patterns. By use of diffraction from the antenna

mounting structure even greater than theoretical coverage
can be obtained. The right circularly polarized pattern
exceeds -4 db gain over approximately 98 per cent of space
with only one null at both operating frequencies.

Some difficulty was encountered in producing a highly effi-
cient ring element with the necessary bandwidth without des-
troying the circularly polarized wall currents. This problem
was overcome for this application, but a considerably more
detailed study should be conducted on the performance of this
type of radiator.

This type of omni antenna can be built with similar results

over any 10 per cent band between 1 and 10 Gc. Slightly
degraded performance can be obtained over a 20 per cent
band.

Secondary Antenna

1. Choice of Design

The secondary, or null fill in, antenna should be chosen and

designed to have its beamwidth, at the -4 db from isotropic leve!_
equal to the angular region not covered by the principle antenna.

Of course, the free space null of the principal antenna is very
narrow, indicating that a rather narrow beam and relatively high
gain secondary antenna is desirable. However, in the case of

the Ranger Spacecraft, the solar panels shadow the Case I omni
antenna and cause a drop in gain for the pattern cut in the plane of
the panels. The -4 db gain crossover level for the two antennas

must be found for this "worst case" even though it will cause over-
lapping pattern coverage in planes not containing the panels. Pattern
measurements of the omni antenna on the mockup Ranger in the
plane of the panels (_ = 0* ) show that the gain has dropped to

-4 db at approximately 0 = 1 30" . This means the -4 db gain
level beamwidth of the secondary antenna should be approximately
100". Assuming the fillin lobe to be parabolic on a decibel versus
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angle plot, the half power beamwidth should be approximately 43°
As noted in Section IV, an axial mode helix is a good selection for

a circularly polarized antenna with a half power beamwidth less

than 60 °. To assure adequate coverage, a design beamwidth of

approximately 50 ° should be chosen.

Helix Theory

Reference 9 gives the complete theory of axial mode helices so

only the results of the application of the theory will be repeated
here.

An axial mode helix should have a circumference (C/)k ) of

approximately 1.0 +0.1 in wavelengths.

For 50 degrees half power beamwidth and using C/)k = 1.0, the

axial length should also be 1.0 wavelengths (L/ _k = 1.0). This
will require 4.8 turns on the helix (n = 4.8).

The axial ratio of the radiated polarization can be calculated,

assuming a perfectly wound helix from

Zn+l
AR =

For our case this yields AR = 0.5 db. However, the asymmetrical
loop at the feed end of the helix always increases this somewhat.

An axial ratio of approximately 1.0 db can be obtained over a 10
per cent bandwidth.

The gain of the helix can also be calculated, neglecting side lobes
from

G(db) _ II.8 + I0 log (CIX)Z (LIX)

and for our design, approximately 1 g db of gain can be expected.

The input impedance of the helix is given by

R - 140 C/k ±20 (ohms)

Again, our case should have a terminal resistance between 115

and 170 ohms. Since we will be feeding the helix with 50-D- coaxial

transmission line, an impedance transformer will be necessary to
obtain low VSWR. A quarter wave section of near 80 ohm trans-
mission line will suffice.
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o Prototype Development and Results

Figure V-38 is a photo of the helix that was fabricated and tested

to substantiate the preceding theory, and Figure V-39 gives the
mechanical details of the design.

Good agreement was obtained between measurements and theory.
The following list compares the results:

VSWR

Gain

Axial Ratio

e{l/2)

e(-4 db)

Fr equency

2113

1.17

12.2 db

1 db

48 °

122 °

2295

1.18

12.4 db

1 db

48 °

128 °

Theory

1. 3 max.

12 db

1 db

50 °

100 °

o

The only discrepancy in the results occurred at the -4 db gain
level where shoulders (minor lobes) broadened the beamwidth.
This is unpredictable and unavoidable.

Figures V-40 and V-41 are the meaured helix patterns, in free
space, at the two operating frequencies. It can be seen that the

beam broadening occurred on one side only and must be discounted
in the design of the antenna. Helix patterns on the base of the
Ranger mockup are essentially the same as in free space.

Conclusions

The helix has been found to be a satisfactory fillin antenna.
Figure V-42 shows the design of a similar helix wound on a
dielectric cylinder for mechanical strength. A dielectric suitable
for space environments would have to be selected. This would

necessitate using a slightly smaller helix, due to the dielectric
constant, and would raise the Q of the antenna, but similar
results could easily be obtained over the desired band.
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FIGURE V-47-

HELIX WOUND ON DIELECTRIC CYLINDER
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•ANTENNAS - GASES/

A. Discussion

The pattern requirements of Case II (planetary missions) dictate

a primary antenna with less coverage and greater on-axis gain.
the coverage could be needed on either end of the spacecraft.

Of course, the larger null region for fill-in requires greater beam-
width from the secondary antenna. The logic and switching require-
ments will be identical to Case I with a possible exception of the best
sequence of action in case of lost contact, tumbling or equipment
fa ilur e.

B. Principal Antenna

The desired pattern shape can be approximated using a modification

of the omni antenna of Case I. The theoretical coverage of the ring
element on an infinite waveguide can be modified to yield many differ-

ent pattern shapes as was done to smooth out and extend the coverage
in Case I. The end effect from the truncated waveguide can be used
to shape the pattern in the axial region. The conical skirt of Case I
can be designed to reflect the energy from the lower portion of the

_p_._rn to the upper half. Control of the location, flare angle and
._|_'Of the skirt can reset in various degrees of pattern cOverage.
:_T_e_fect was noted when the shape of the skirt was being developed
to increase the Case I coverage, but no attempt was made to find the

optimum design for Case II coverage. A variation of the skirt would
be a set of radial monopoles. The truncated end can be constructed
in many configurations, also. Hemispherical andlconical flares are
two methods that have been tried to smooth the pattern of Case I.

This method of employing diffraction can be considered as similar to
a three element array with limited control of the "end elements. "
It __m_ust be recognized, however; that the "elements" do not have iso-
tropic or even identical patterns.

The gain that can be realized at various pattern angles cannot be cal-
culated, but this technique of developing the optimum pattern shape
will result in the maximum gain that can be achieved for that pattern
shape.

The reduced coverage on the lower portion of the pattern (spacecraft
side) sould reduce the solar panel reflections also. When the primary
antenna is located on the spacecraft apex, deflection screens on the

panels should not be necessary. Of course, when the principal antenna
is located on the opposite end of the spacecraft it must be mounted suf-
ficiently far from the base and panels to allow coverage at angles greater
than 90 ° Irom the antenna's axis.
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Secondar y Antenna

The secondary (fill-in) antenna for Case II must have greater coverage
than for Case I. A shorter helix {fewer turns) would yield a slightly
broader pattern (up to 60" half power beamwidth) 9 and could meet the

-6 db gain specification. However, the other types have inherently

broader patterns and should cover the entire null region with better
than -6 db gain.

One of the more simple and lightweight types is an Archimedian spiral
{planar spiral) 11. This design has a half power beamwidth of 80 ° The

disadvantage is that it requires a balun feed and should be mounted a
quarter wave above a ground plane.

Another design with similar coverage, but lacking the disadvantages
of the planar spiral is the conical spiral I0. A very short, truncated
cone could be used for the small bandwidth desired.

Conclusion s

The principal antenna coverage of Case H can be obtained by modifying
the configuration on both ends of the omni antenna of Case I. The

exact requirements of a particular mission should be considered when

defining the desired coverage and the pattern should be developed on
the exact spacecraft to be used. The changes necessary to meet the
general shape called out in Section II-B must be developed experimentally.

The fill-in antenna for Case II could be a helix (as in CaseI) or a form
of planar or conical spiral. The best choice and manner in which
the beamwidth is optimized must be determined after the extent of

the null region of the principal antenna is measured on the spacecraft.
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" VII. SWITCHING LOGIC

A. Logic Description and Constraints

The logic selects one antenna and one receiver for use on-line.

In Mode II the other antenna is connected to the other receiver; in

Mode I no second receiver is available, so alternate antenna is not

used. The logic will make no change in the antenna/receiver com-

bination for use for momentary loss of signal. The logic considers

any loss of contact for less than two minutes as momentary. For

Mode II service, the logic will make no change unless the alternate

receiver input is known to be better and remains so for one full

minute, and on-line receiver is known to be inadequate. This

limits the switching frequency in the case where vehicle orienta-

tion results in nearly equal response from the two antennas.

In addition, the logic is biased to require about I to 5 db preference

depending on signal level.

If contact is lost, the logic system selects the alternate antenna/

receiver combinations. If no signal is found, the system switches

back to the original configuration. The initial search is conducted

using a relatively high threshold in an effort to obtain a high quality

link. If unsuccessful, the search is repeated using a minimum

threshold so as :to restore contact if at all possible.

If, during a prolonged period of time, no signal is received, the

logic system selects the prime antenna for the transmitter and
on-line receiver. Since the logic tends to select the best receiver

for use on-line, the on-line receiver remains in service throughout

the course of logic-controlled switching unless the on-line
r eceiver fai is.

After the prime antenna has been selected, the logic cause_ )be

second antenna to be sampled periodically for the presence of an

{acceptable) signal.

For tumbling rates of three degrees a second or higher, the timing

constraints prevent antenna switching. The communications system

will remain connected to the antenna in use prior to start of tumbling.

If this were the secondary antenna, transfer to the principal antenna

will be accomplished only if the standby receiver AGC is able to over-

ride the comparator bias for at least one full minute, and the AGC of

the on-line receiver is not adequate. Transfer to the alternate

antenna can be assured under tumbling conditions only by removing

ground station RF output for about two and one-half minutes.
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Bb Circuitry Deoi_n

1. System Layout

a. General

The recommended logic circuitry differs somewhat from
the actual breadboard. The nature of these differences is

such that the current breadboard is sufficient to prove

feasibility of the recommended circuit. The changes are
as follows:

l) Counter should have seven instead of only five

binary stages. This allows for an improved switching pat-
tern. The lost-contact mode is thus set at 34 minutes

instead of at 6 minutes. The lost-contact cycle is 66 instead

of 30 minutes long. In addition the increased counter cap-

acity allows testing the standby antenna at the high and
then both antennas at the low threshold, so that the best

antenna can be selected as long as contact is maintained
at all.

2) The gate group module is simplified by removal

of one gate.

The following description applies to the recommended logic

circuitry;

b. Mode III Logic

The proposed Mode III logic would be separated from the

Mode II and Mode I logic. Figure VII-IA is a block

diagram of a Mode III system. The comparator would be
utilized as well as the relay control modules. The hard-

';:are needed over and above that required for a complete

Mode II system is:

l)

2)

3)

4)

51

An additional diplexe r

Two coaxial relays, K2 and K5

Two relay control modules

Hi=Gain Stee rable Antenna

Additional logic gates

Mode III Logic Criteria:

Mode III-g is the acquisition mode wherein the on-line

receiver is attached to the high gain steerable antenna

VII- 2 R-2870-3582-A
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C.

by K2 transfers. The transmitter remains attached to the

previously selected antenna via diplexer 1. To initiate a

M6de III-A acquisition mode, the Control Command Sequencer

transmits a ready command to the Mode III logic.

Mode III-B is the non-acquisitive portion of Mode III. Once

satisfactory reception has been established with the high gain

steerable antenna, the CCS will command the Mode III logic

to shift to the Mode III-B operation by transferring K5. The

transmitter is switched to the high gain steerable antenna

through diplexer g and the following situations will be met

by the Mode Ill logic.

I) Case I: The standby receiver is attached to the omni

antenna and has no contact. The on-line receiver has

just lost contact. The Mode III logic shifts the standby

receiver to the on-line position by transferring K3 and

K4. If contact is established we conclude that the on-

line receiver has failed and no further switching is

required. If contact is not established then we conclude

that the high gain steerable antenna has lost lock due

either to wrong orientation of high gain antenna or earth

station shytdown. The logic then drops into the Mode II

lost-contact mode, and a signal is transmitted to the

CCS indicating Mode HI service has been terminated.

z) Case II: The standby receiver is attached to the omni

antenna and has contact. The on-line receiver has just
lost contact. The Mode III logic shifts the standby rec-

eiver to the on-line position, again by transferring K3
and K4. If contact is established we conclude that the

on-line receiver had failed and no further switching is
required. If contact is not established we conclude that

the high gain steerable antenna has lost lock and the logic

reverts to Mode II operation and a signal is transmitted

order to re-establish Mode Ill service the CCS will have

to transmit a command triggering the acquisition mode.

Mode II Logic

Figure VII-I is a block diagram for a Mode I and Mode II

system. In Mode II the logic circuit switches antennas (KI)

to the transmitter and to both receivers whenever the standby

receiver input is some 5 db stronger (the magnitude of pre-

ference depending on absolute signal level) than the input to

the on-line receiver and the on-line receiver is inadequate,

and provided this condition has existed continuously for at

least one minute. (At lower signal levels, the 5 db figure is

reduced --for very low levels the figure is less than 1 db.)
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If the on-line receiver fails, the logic wilt interchange
receivers, otherwise, the same receiver remains on-line

at all times.

If the standby receiver fails, the logic will revert to

Mode I service,

Mode l Logic

A Mode I system is a truncated Mode II system. Since

only one receiver is used, K4 and its control (receiver

output selector) are not used, and K3 {receiver input

selector) can be a SPDT relay. Simplified circuits can al-

so be used for the comparator and gate group modules.

In Mode I, the logic retains the existing antenna selection

until the (on-linel receiver reports an unacceptable sig-

nal level. If this situation lasts two minutes, the logic

establishes the te_t mode. This means the receiver is

connected to the standby antenna to determine if it is

acceptable. If the standby antenna produces a strong

signal (as defined by the generation of an AGC voltage

above comparator threshold), the antennas are inter-

changes. Then the test condition is cleared to complete

logic action.

At increased ranges, the normal threshold level may

represent an unattainable signal level. To cover this

possibility, when the above test is not satisfied within

two minutes, then (at t = 4 minutes) the threshold level

in comparator is dropped to a level representing marginal

service only. The receiver is then returned to the original

antenna (terminating first test). If the original antenna

can satisfy this reduced requirement, the logic is satisfied,

and returns to resting co_ditlun.

If the original antenna cannot satisfy even the reduced

threshold requirement within two minutes, then (at t = 6

minutes) the test condition is restored to determine if the

standby antenna can produce a usable signal level. Again,

if a usable signal level is obtained while in test mode,

the antennas are interchanged (to place transmitter on

correct antenna) and the test condition cleared (placing

receiver on same antenna as the transmitter).

If, after two more minutes have passed (at t = 8 minutes)

no signal has been detected, the test mode is cleared and

a waiting period is started, the assumption being a ground

VII-6 R-ZB70-358Z-A
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station failure. This period lasts Z6 minutes. Then,

(t = 34 minutes) if no signal has been detected, the lost
contact (LC) mode is set.

In the LC mode, transmitter and receiver are both con-

nected to the main beam antenna. This configuration is
held for 3Z minutes, then the counter is reset, and test

cycle is repeated to check fill-in antenna response. In
effect, once established, the LC mode consists of a

66 minute cycle --62 minutes on the main beam antenna,

plus 4 minutes on the fill-in antenna --repeated as often
as necessary, until contact is again restored.

The comparator threshcld level will normally be set low

after LC mode, since only two minutes of the cycle involve
use of the higher threshold level. If range allows the
higher threshold level to be satisfied, then at next test

cycle this level will be restored. If desired, this cycle
can _'e initiated at once by interrupting the ground-station
signal for about 2-1/2 minutes (assuming that the wrong
antenna is in service).

Module Design

a. Comparator

The comparator is used to compare the AGC outputs of
the two receivers with preset threshold levels. One com-
parison determines if the on-line receiver AGC is adequate.
The other comparison determines if the on-line receiver
AGC is adequate and greater than the standby receiver AGC.
The comparator has a built-in preference for the on-line
receiver of 1 db for very weak signals and 5 db for ade-

tor circuit.

As long as the on-line receiver is adequate (adjustable by

R20) the comparator output indicates "good" and no logic
action will occur. If the on-line receiver AGO is not

adequate and is less than the standby receiver AGC,

the comparator output indicates a "not good" and logic

optimization is initiated.

b. Circuit Action

The comparator has three inputs: a DC reference (GND =

LOW THRESHOLD CONTROL), the on-line AGC voltage
CON LINE AGC = IN) and the standby AGC voltage (STBY
AGC = IN}. There are two.outputs: a signal indicating a

VII-7 R-Z870-3582-B
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good condition (GND ,, GOOD = OUT) and a signal indicating

standby is above threshold and better than the on-line receiver

(GND - STBY = OUT).

Transistors QI, QZA and QZB form an analog OR circuit.

Only the transistor with highest base voltage will have any

collector current. The other two transistors will be cut off.

Transistor QI is driven by the DC threshold reference signal,

QZA is driven by the standby AGC and QZB is driven by the

on-line AGC plus the preference bias network CRI and RI4.

The preference bias network makes the on-line AGC appear

higher as shown in Figure VII-15, page VII-36. The collector

of the standby transistor QgA is sampled by resistor R7 and

amplified by Q3 and Q4 in such a manner that when the standby

AGG input is greater than the DC threshold reference and the

on-line AGO with preference, the collector of QZA moves

toward ground causing Q3 base current to flow and pulling col-

lector of Q3 and base of Q4 toward +I0. 5 volts, which turns

Q4 on hard, producing a ground standby output. At the same

time, QZB was turned off (only one of QI, QZA or QZB may

be on at one time) by QZA emitter. The collector of Q2B

rises to +10.5 volts and "arms" one leg of an AND gate

consisting of CR4, CR5 and Q5.

Transistor s Q6A and Q6B form a comparator whose purpose

is to detect when the on-line receiver is adequate irrespective

of the standby receiver. The output of this comparator is con-

nected to the other leg of the AND gate consisting of CR4,

CR5, and Q5. When both Q6B and QZB are off (on-line AGC

below adequate threshold and below standby AGC) then both

OR4 and GR5 are connected to +10.5 volts through RZZ and RI3

respectively. This action permits Q5 to be turned on by cur-

rent flowing through RI5. When transistor Q5 is turned on, Ill

closes, placing +I0.5 volts on the "good" output {GND = GOOD

= OUT) indicating a not good condition.

If the standby receiver AGC level is now greatest, the comp-

arator releases the Mode II gates in the gate group module.

There are two of these gates, however, one of them remains

blocked by the agree/disagree circuits so that only one path

is available for the clock pulse at t = 1 minute.

If the threshold voltage is greatest, both Mode II gates

remain blocked, and only the Mode I logic paths can be used.

(These paths are designated "Mode I" because in a dual rec-

eiver system with only one of the two receivers in operating

condition, the resulting logic paths are coincident with those

of Mode I. For the present discussion, it must be remembered

that we are discussing a "Mode II" or dual receiver system,

and are utilizing the Mode I logic paths, not Mode I logic.)

VII- 9 R-Z870-358g-A
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d.

The threshold level is automatically set to its upper

level (adjustable before launch to any desired value I at

t = Z so that Mode II service starts by seeking a strong

signal. At t = 4 (assuming counter reaches this level

before logic is satisfied and counter resetl the threshold

level is reduced to a level representing marginal service.

This change may permit Mode II action at t = 5 minutes,

otherwise, Mode l l_gic paths will be utilized by testing both

antennas against this low level. Once lowered, the thres-

hold remains low until logic action is terminated, and then

restarted by a new outage. If this outage is cleared by

switching antennas at high threshold, the high threshold

will remain in effect until circuit can no longer find an

antenna to satisfy this requirement.

Clock

Figure VII-3 is a schematic of the clock circuit. The clock

generates one pulse each minute. The circuit is composed

of a multivibrator, a buffer amplifier, three step-counters

and an output amplifier.

The multivibrator operates at one pulse per second. Its

output is squared by the buffer amplifier to produce a con-

stant amplitude output. The buffer amplifier drives the

three step-counters in parallel.

The step-counters count by 3, 4 and 5, respectively. As

a result, one input pulse in 60 (3 x 4 x 5) will produce a

three-way coincident output pulse. By this means, extremely

slow speed counters are avoided. Step counters are almost

as period insensitive as binary flip-flops. Moreover, their

higher counting ratios reduce the required number of

stage a --and the current drain --considerably.

The output amplifier is activated by the triple-coincident

pulses only. It is made AC regenerative to give a very

sharp failing edge to the output pulse. This is necessary

to trigger the counter. The output pulse width is set by

the step counters and is just under Z0 milliseconds.

Counter

Figure VII-4 is a schematic of the recommended counter

circuit. The breadboarded circuit consisted of only five

stages, however, the added stages are certain to work

(they are, like four of the present five, driven by an ident-

ical stage and at a slower rate so that no doubt as to per-
formance exists).

VII- i0 R-Z870-358Z-A
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e.

The counter outputs (input is a 1 ppm pulse train from
clock) are as follows:

I) an Output at count of 0

Z) an output at count of 2

3) an output at counts of 0, Z,

4) an output at count of 32.

4 and 6

The first two of these outputs are used to control the com-

parator threshold level. The third controls the Mode I

signal-seeking cycle, while the fourth output initiates the
lost-contact mode.

A seven place binary chain can count to 1Z7, however, the

count is shortened in this case to 66 by feedback which
resets the counter to -2 (or 126) when the count reaches

64. The counter is reset to -Z when resting since this

simplifies the output circuitry.

The three stages shown dotted would be added only if timed

remote operation was required; since more than five

stages makes for an unreasonably large card, the counter

is constructed on two identical cards. Only the components
are arranged differently to distinguish between them.

Gate Group Module

Figure VII-5 is a schematic of the recommended gate
group module. The breadboarded circuit included an addi-

tional gate, not needed with modified counter.

The gate group consists of two, triple-input AND gates

used in Mode If, two double-input AND gates used in Mode I,

plus an inverter and a flip-flop.

The inverter provides a negative signal, normally, to

block three of the four gates in response to an affirmative
input on the AGREE line. When circuit is in test mode,

this input is missing, and these three gates released by
inverter.

The flip-flop controls the comparator threshold. It is

in turn controlled by the counter outputs at t = 2 and
t = 4 minutes.

VII-I 3 R-Z870-358Z_A
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f. Relay Controls

FiguresVII-6A, B, C and D show a schematic of the relay
control modules. The relay control modules are similar,
but not identical. Three of them include a toggle input.
Pulsing this input causes the controlled relay to change
position without regard to initial position.

The K1 relay control also has a reset input. Grounding
this point (or removing the 10. SV power, but not the

28V power) resets K1 to standard position. In addition
an AND circuit on this module produces an output pulse
to the K3 control module at the end of a K1 transfer if

K3 and K4 disagree as to which receiver is supposed to
be in service.

The K3 relay control includes no added circuitry.

The K4 relay control includes an EXCLUSIVE OR circuit

that reports whether or not K3 and K4 are in agreement.

The K3 relay control is required only if Mode III service

is required. The K2 relay control has no added circuitry.

In fact, one diode is omitted so as to convert the toggle

input to a set input.

CI Functional Operation

Figure VII-7 is a diagram showing the criteria used by the logic and
the correct procedure as determined from these criteria at any given
time. The following conditions are possible.

1) Normal Conditions:

Criteria I and II Yes
Criteria III and IV No

No action is allowed, --timer is held in reset condition.

2) Mode II Transfer:

Criteria II and HI Yes
Criteria I and IV No

Timer is releaseckfrom reset and allowed to run. First

ciock output pulser(on t = n line) will pass through Gates
A and E to the main antenna selector control. This control

will toggle the main antenna selector relay (K1 in Figure
VII-l), interchanging the two antennas. After this, normal

conditions will be restored, halting the logic procedure.

First clock output pulse occurs two minutes after timer starts to run.

VII-15 R-2870-3582-A
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3) Mode II signal seeking procedure:

Criterium II Yes

Criteria I, III and IV No

Timer is again allowed to run. Criteria II and IIl block

Gates A, B, C and D. Second clock pulse (at t = Z) causes

the counter to generate outputs on the t = 2 and the t = Z,

4, 6, 8 lines. The t = P line pulse assures that comparator

uses upper threshold level (representing a "loud and clear"

signal). The other pulse is passed through Gate F to the

receiver input selector control. This control causes the

receiver input selector relay (K3 in Figure VII-l) to toggle,

interchanging inputs to the receiver(s). At this point, a

number of possibilities exist:

a) Strong signals are being received. The standby

receiver has failed, or was omitted, so that Mode I

service is needed to test standby antenna. In this

case logic now determines:

Cr iterium I Yes

Criteria II, llI, IV No

Timer is reset immediately. Reset order is passed

by Gates C and E (E and F are always open) to the

main antenna selector control. This control toggles

Kl as in condition Z. This generates a pulse due to

criterium IV, passing through Gates D and F to the

receiver input selector control. This control returns

K3 to its original position. Normal conditions are

restored by this course of action.

b) Strong signals are being received. The on-line

receiver has just failed. In this case the situation is:

Criterium Ill Yes

Criteria I, II, IV No

This me.ans that Gates B and C open. Next clock

pulse (at t = 3 minutes) will pass through Gate B to

the receiver output selector control. This control

toggles the receiver output selector relay (K4 in

Figure VII-l). Note that receiver input selector

relay has already been toggled, so this completes a
receiver interchange. Normal conditions are thus

restored. (Only Mode I service can be used hereafter.)

VII -2 1 R-2870-358Z-A



Strong signals are not available. In this case:

Criteria I, II, Ill, and IV are all No.

At t = 4, counter generates pulses on the t = 4 and

the t = 2, 4, 6, 8 lines. The t = 4 line pulse switche_

the comparator threshold to low (marginal signals
accepted). The t = 2.,4, 6, 8 line pulse results in K_

{Figure VII-I) toggling back to original position. Now,

again, multiple possibilities exist.

c-_.__l) Weak signal present. On-line receiver AGC
voltage satisfies Criteria I. In this case normal

conditions exist, and logic returns to resting mode.

c-__2) Weak signal present. Standby receiver AGC vult-
age satisfies criterium III. Next clock pulse is

passed to the K1 control (as in Condition d) for normal

Mode II transfer. {Mode II service will be provided

now until point where outputs of both antennas simultan-

eously are below the relaxed requirement.) Normal
conditions are restored.

If none of the above possibilities fit the circumstances,

the logic continues signal-seeking. At t = 6 minutes,

a pulse on the t = 2, 4, 6, 8 line again results in K3

{Figure VII-I) toggling. This connects the on-line

receiver to the standby antenna again. Now,

c-3) If a weak signal is present, but the standby rec-
eiver is inoperative, conditions are read by the

logic as:

Criterium I Yes

Criteria II, III, IV No

This is the pattern already described under 3 a.
The same procedure, naturally, is used to restore nor-
real conditions.

c-4) A weak signal is present. On-line receiver has

just failed. Logic now determines:

Criterium III Yes

Criteria I, II, IV No

This is the pattern found under 3b. Naturally, the

same procedure is used to restore normal conditions

(4 minutes later in cycle, of course).

VII- 2.2 R-2870- 35_"



c-5)

c-6)

Neither antenna/receiver combination satisfies logic.

(Presumably, ground station if off the air, or line-of

sight path is blocked.) This produces:

Criteria I, II, ILI and IV No

The counter continues counting. At t = 8 it gener_tes

a final pulse on t = 2, 4, 6, 8 line. This causes K3

(Figure VII-l) to return the circuit to the original

configuration (threshold level remains at low level).

This condition is maintained for 26 minutes (until t = 34)

unless either criterium I or III changes to Yes.
(Criterium Iwould reset counter --see Condition 3b

for procedure if criterium III changes to Yes. )

Lost contact condition: At t = 34 the main beam

antenna is selected for both the transmitter and the

on-line receiver. This condition is maintained for

32 minutes (until t = 66) unless criterium I or III

changes to Yes (see above}.

Condition

t=O

t= 1

t=2

2<t<3

then:

followed by:

t= 3

t=4

4- t<5

Griterium I changes to No

(If criterium III is Yes) - main antenna
selector transfers

(Criteria I and III must be No, to reach

receiver input selector transfers. High
threshold in use.

t-- 2)-

(If criterium I changes to Yes)

Main antenna selector transfers

timer reset

Receiver input selector transfers

(If criterium III changed to Yes at t = 2) -

receiver output selector transfers

(Criteria I and III must be No to reach t = 4)-

receiver input selector transfer. Low threshold
in u_e.

(If criterium I changes to Yes). Timer reset --
no further service needed at this time. (Low

threshold continued in use. )

2

3

3a

3b

3c

3c-1

t VII-23 R-3870-3582



t=5

t=6

6_-t _7

then:

followed by:

t= 7

t=8

8<t

t = 9, I0, ---n

t= 34

t= 66

(If criterium Ill changed to Yes at t = 4) -
main antenna selector transfers

{Criteria I and III must be No to reach t = 6)-

receiver input selector transfers. Low threshold
continues in use.

(If criterium I changes to Yes) - timer reset

Main antenna selector transfers.

Receiver input selector transfers.

(If criterium III changed to Yes at t = 6) -

receiver output selector transfers.

(Criteria I and III must still be No to reach

t = 8) - receiver input selector transfers. Low
threshold continues in use.

(If criterium I changes to Yes) - timer reset--
no further service required at this time.

(Next minute after criterium III changes to Yes)-
main antenna selector transfers.

(Criteria I and III must still be No to reach

t = 34) - main antenna selector set to main beam

antenna (lost contact mode)

Reset timer to zero and start over.

Condition

3c-g

3c - 3

3c -4

3c-5

3c-6

D. Ground Control of Antenna Switching

The ground control is available in case the spacecraft logic

fails or any time manual control is desired. To initiate the

ground control of antenna switching a coded signal is transmitted

to the spacecraft actuating the remote relays. The block diagram

is shown in Figure VII-8.

The system proposed here utilizes three input commands and four

output commands. The inputs are as follows: remote start,
remote stop, sequence advance, and toggle. The outputs are:

comparator good, comparator standby, clock check and relay status.

The remote start command transfers logic power to an alternate

power source, the switching logic to become inactivated, and the

sequence logic to become activated. The remote stop command
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E.

immediately causes the switching logic to revert to the normal

condition. If a remote stop command is not transmitted, the space-

craft logic system will automatically take over control 18 hours

after receipt of the remote start signal,

The sequence advance permits the ground operator to select any
one of seven (more, if desired) control functions. The function

chosen is determined by counting sequence advance command

pulses. That is,the start command selects Kl remote function and

the first sequence advance pulse moves the control to K2 relay and

so on. If a change in status is desired, a toggle command is trans-

mitted by the ground station. The function selected is then toggled.

In order to evaluate the changes in status of the receiver-transmitter

system, it is proposed that the comparator "good" and "standby"

status be telemetered to the ground station. These signals will per=

mit the operator to verify that the proper decision was made. The

clock check pin-points a failure in the timing circuits. The relay

status signal permits the operator to determine whether a switching
relay is in the set or reset condition.

Failure Mode

In the event of a failure of one of the receivers in a Mode II system,

the logic is designed so that the system reverts to a Mode I system

automatically. In the event of a comparator or other logic failure

wherein an adequate signal cannot be found, the lost contact mode is

initiated wherein the best antenna is connected to the best receiver

(rest state). The ground control mode permits diagnostic tests to

be performed by the operator to determine the effectiveness of the

antenna switching system. The ground control mode offers the

best insurance and recovery from a malfunction in the automatic

switching system. A separate power source for ground control is

proposed for added reliability.

The clock check detects a failure in the logic timing. A failure in

the timing could result in a complete failure in the automatic switch-

ing system. Constant monitoring of this variable would permit

immediate take-over by ground control to prevent a permanent lost

contact. Another feature would be automatic transfer to a second

spare set of timing circuits.

VLI=26 R-i870-3582-A
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F. Logic

I,

.

and Switch Testing

Breadboard Logic

The logic system that was breadboarded differs somewhat

from the system described in this report. Figures VII-9
and VII-10 are the schematics of the breadboarded counter

and gate group modules respectively.

Figure VII-I I is a photograph of (from left to right} the gate

group, the counter, the clock, and the comparator modules,

mounted in a plastic frame for ease in testing. The modules

are wired to one another, with all external connections brought

to the barrier strip at top of frame. Frame is, naturally, not

part of logic system. In practical cases the modules would be

encapsulated for greater reliability and easier mounting. Inter-

connections among these four modules would probably be welded

wires buried within the overall encapsulation. Space required

would be about one third that used by breadboard modules.

Figure VII-IZ identifies the connection points of each module and

the tie points on the barrier strip.

Figure VII-IZ is a photograph of the relay control modules. The

three relay control modules are built on identical PC boards,

but differ in the component arrangements used for each unit.

The breadboard logic system includes one transfer coaxial relay--

usable as either K1 or K3 in Figure VII-I, and one SPDT coaxial

relay with a conventional, miniature DPDT relay wired with coils

in parallel with the coaxial relay coils to simulate K4 in Figure

Vll-l. Actual system requires two such DPDT relays, but one

is enough to demonstrate feasibility (current required is negligible,

compared to the 3 ampere drain of coaxial relays}. All three

relay controls are included, since they differ in the auxiliary

circuits included.

Tests Performed:

a. Module s

I) Comparator

Threshold: Adjustable 1.4 to 4. 6 volts

(equivalent to I. 54 to 5.04 volts at AGC

line}

Input Impedance: See Figure VII- 14

Bias: See Figure VII- 15

VH-Z7 R-Z870-358Z-A
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C.

2) Clock

Per iod:

Output:

3) Counter

Checked OK

4) Gate Gr oup

Checked OK

Relay Controls

Checked OK

57 sec (could be changed to 60 sec easily)

10 volt amplitude

Leading edge negative going, 150 nsec
fall time

19 msec wide

Counts correct

Reset correct

Outputs correct

Flip flop
Inverter

Gates

Toggle Circuit

Reset (KI only)

AND (K4 only)

Assembled Logic

1) Comparator

Controls clock and counter.

Threshold controlled OK.

Z) Clock

Operates counter.

3) Counter

Operates from clock.

Drives relay controls.

4) Gate Group

Gates commands.

5) Relay Controls

Operate from commands.

No Integrated Logic System Tests Were Performed

V II - 5 3 R-Z870-358Z-A
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. Implication of Tests

a. System Operation

The logic system loads the receiver AGC lines. Figure

Vll-14 shows the extent of this loading as a function of the

AGC voltage.

The comparator is designed to give a preference for the on-

line receiver. The standby receiver must exceed the on-line

performance by an amount determined by the comparator

bias characteristic in Figure Vll-15. The input is the on-

line AGC level in volts and this is plotted against the "extra"

volts required by the standby AGC to cause the comparator

to switch. The extra volts are given by on-line AGC minus

standby AGC volts at the switching point.

Figures VIl-16, 17, and 18 are curves indicating the degree

of preference built into the breadboard comparator. These
curves are obtained as follows: Take the 40 db above thresh-

old point on the sample receiver curve, --this corresponds

to -99 dbm on Figure VII-21. The AGC voltage at that point

is approximately 4. 35 volts. The AGC voltage at -96 and

-94 dbm is 4.40 and 4.44 volts respectively. The difference

between the operating point -99 dbm for the on-line receiver

and the -96 dbm or the -94 dbm for the standby receiver res-

ults in the bias required for 3 db and 5 db preference respect-

ively. These are plotted as points (1) and (2) on FigureVll-18.

The AGC voltage at the 40 db above threshold point (-99 dbm)

is 4.3 volts. Referring to Figure Vll-15, find that 4. 3 AGC

volts corresponds to an actual comparator bias (designed into

the comparator) of 0. l volts. This is plotted on FigureVII-18

as point (3). From this, one concludes that at a receiver

level of (-99 dbm) or 40 db above threshold, the built in pre-
ference is a little over 5 db of input RF signal.

Figure VII-19 shows the (approximate) responses of the two
antennas as a function of vehicle orientation of the line-of-

sight path. (These curves are _iverage responses --minor

variations with vehicle spin are not shown. ) Figure VII-Z0

shows the AGC voltages the sample receiver would produce

for various signal levels (as measured by an isotropic antenna).

The dotted lines indicate the points at which logic would initiate

the procedure to transfer to the alternate antenna providing on-

line receiver was less than adequate as defined in Section F. 3.b.

(actual transfer would occur one minute later). Thus, assum-

ing a low tumbling rate, the hysteresis would be only slightly

greater than the indicated 20 ° to 30" (depending on signal

strength).

b. On Receiver Mismatch

If the receivers have a mismatch with respect to AGC char-
acteristics, this mismatch appears as an error function to

the logic. Refer to Figure VII-gl. The mismatch between

VII- 34 R-Z870-358g-A
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the Nominal Maximum Limit, the Sample Receiver, and

the Nominal Minimum Limit are so great that the logic

would be compromised. For example, when the receiver

represented by Nominal Lower Limit is 20 db above threshold

(-If9 dbm) the AGC voltage is 3 volts. The Nominal Maxi-

mum Limit voltage does not drop to 3 volts until -134 dbm

or 5 db above threshold. A 15 db error is introduced by
the AGC mismatch.

A simple offset matching technique will permit sliding the

AGC curves to the left or right to achieve a best fit with a
nominal AGC curve. A circuit that will achieve this result

is shown in Figure VII-3Z. The details of the offset DC
voltage injection circuitry can take many forms and should

be integrated into the receiver design. This technique was
applied to the receiver characterist:cs of Figure VlI-Zl by
overlays and the improved set of curves shown in Figure

VII-Z3 resulted. If we concern ourselves with only those

signals less than 30 db over threshold, the worst case
error is about 2 db.

The range of AGC comparisons can be limited by the

"adequacy" comparator (see comparator VII-5). Adjusting

RZ0 of Figure VII-Z determines the range over which the auto-

matic switching logic is active. The philosophy here is that

if a signal is above a certain level (defined as adequate) no

optimization is required. The remaining Z db of uncertainty

is eliminated by the built-in preference in the comparator.

By the simple expedient of including an AGC offset adjust-

ment (adding or subtracting a fixed DC voltage) in the rec-

eivers the AGC curves of Figure VIl-?-I were adjusted so

that only Z db of preference was required to eliminate

unnecessary or false switching commands.

c. System Power Consumption

System power requirements are shown below. The logic

is designed to operate from +10. 5 VDC, except for the

coaxial relays plus a small drain by the relay controls at
+g8 VDC. The NORMAL figures apply when logic is satisfied;

the ACTIVE figures when logic is not satisfied --timer is
running, and the relays may be operated during this period.

Module Nor real A ctive

Comparator

Clock

Counter

Gate Group

I. 65 ma at 10.5V

0.60 ma at I0.5V

15. 75 ma at 10.5V

iZ. 78 ma at 10.5V

23.0 ma at 10.5V

6.0 ma at 10.5V

55.0 rna at 10.5V

12.0 ma at 10.5V

VII-43 R-2870-358Z-A
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AGC

Circuit
VAGC +

OFFSET

ADJUSTER

Voff set

©

VAGC

?
GND

#

VAG C = VAG C + Voffset

VAG C = Corrected AGC Voltage

VAG C = Uncorrected AGC

Voffset = DC Offset Correction
Voltage

FIGURE VII-2-2.

AGC OFFSET CORRECTION VOLTAGE
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Relay controls do not require fast rise pulses, so they can be located

so as to minimize the g8 volt line lengths (3 ampere pulses flow here).

The remainder of the logic is best grouped at any convenient location

in vehicle --currents are small, but relatively fast pulses are involved.

Shielded lines should be used for the AGC lines and the relay control

command lines to protect them.

VII -47 R-Z870-3582-A



Module

Relay Controls (ea. of 3)

Total Drain

Total power requirement,

0. 785 watts

i. 677 watts

Normal

5.00 ma at i0. 5V

2.00 ma at Z8V

45. 7 ma at i0. 5V

6. 0 ma at 28V

Active

4.0 ma at 10.5V

3.0 ma at Z8V

(1 minute average)

108.0 ma at 10. 5V

9.0 ma at 28V

at 10% over normal voltage:

normal

active

F. Recommendations

The Mode II system is far superior to the Mode I where reliability

is important. Compared to a fixed configuration, a Mode I system

is mainly useful in obtaining initial contact to an orbiting satellite,

since over-all reliability is substantially set by the receiver and

transmitter. This basic level is much higher in a Mode II system,

and the probable service life is extended by a factor of almost three.

Thus this system gives the advantages of a Mode I system, plus the

probability of maintaining contact to a greater range.

If power consumption appeared to be a critical factor, a modification,

intermediate between Modes I and II, is possible. In this case, one

receiver could be turned off normally, together with all the logic other

than the comparator. When a Mode I signal seeking procedure was

called for, the second receiver' would be energized together with the

logic circuitry. This would extend receiver lifetime as well as save

power. Another option would be Mode II, remotely changed to this

pattern after launch and subsequent maneuvers were completed.

The use of field effect transistors in the comparator is clearly indi-

cated. This would reduce loading on the AGC lines. High gain is

not needed here, nor high frequency gain, but stability is important.

Field effect transistors are somewhat better in this respect, also.

The counter circuit recommended is designed to fit easily into a timed-

remote system. Construction of the full, timed-remote system is

recommended where loss of contact is expected at regular intervals.

The capture of control feature appears particularly wise, unless

protection is desired against control commands originating at unfriendly

stations (this is another problem altogether}.
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Relay controls do not require fast rise pulses, so they can be located

so as to minimize the Z8 volt line lengths (3 ampere pulses flow here).

The remainder of the logic is best grouped at any convenient location

in vehicle --currents are small, but relatively fast pulses are involved.

Shielded lines should be used for the AGC lines and the relay control

command lines to protect them.
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VIII. RE LIA BILIT Y

Failure rates have been separately computed for the various modes of

action possible to the logic. These are

Mode I logic F =

:,,c
Mode iI logic F =

Receiver interchange F =

Total logic system F =

-6
32.04 x i0 /hour

19.41 x 10-6/hour

29.87 x 10-6/hour

40. Zl x 10-6/hour

There are many parts used for more than one of the above, and in addition

the risk of failure in an unused component disabling the system has been
incorporated in the above numbers.

From the above failure rates, the probability that the various modes of

logic will survive 2000 hours operation can be computed, as P = e -g000 F

Mode I logic , P = 0.938

Mode II logic P - 0. 961

Receiver interchange P = 0. 942

Total logic system P= 0.923

Likewise, the mean time before failure can be computed as MTBF = i/F

However, a more meaningful number is the expected service time in a given

mode. This depends on the receiver and transmitter reliability figures as

well as that of the logic.

Given, for 2000 hours operation:

Pxmtr = 0.951

P = 0. 789
r cvr

The probability that a transmitter and two receivers will all be available

is (Pxmtr)(Prcvr)(Prcvr } or

(0.951)(0.789) 2 = 0.592

This is the probability that a Mode 51 system is available for perfect logic

reliability. Including logic failures gives

(0. 951)(0. 789) 2 (0. 961) = 0. 569

Mode II logic used here to represent those circuits unique to Mode II and not
common to Mode I.

VIII- i
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The difference between the above two figures, or 0.02-3, represents the

probability that with transmitter and both receivers operational, the logic
will fail in Mode II. There remains the possibility that Mode I logic is
still functioning, however. Due to overlap between the Mode I and Mode II
logic components, there is only a 50 per cent chance that Mode I will be avail-

able under these circumstances. Thus, the probability of having Mode I
service here (after a mode II failure) is

(0.023)(0.50)(0, 93) = O. Ol I

This leaves, of the original 0.59Z, just 0.012 which is assigned to logic
failure.

A second possibility is that one receiver fails, but the other receiver and

the transmitter are operational. The probability of this is that since either
receiver can be the one to fail,

P = 2(0.951)(0.789)(I-0.789) = 0.317

Half the time, on-line receiver will fail, requiring a transfer; hence,

the probability that receiver on-line is good comes to

(0.317)(IIZ)(l + o.942) = 0. 307

Now, this number can be combined with the figures for Mode I logic to get
the probability of Mode I service.

p = (0.307)(0.938) = 0.288

As before, the difference, or 0.019, represents logic failure in an other-
wise usable system.

Thus the total figures are:

Mode H P = 0.569

Mode I P = 0. Z99

Total logic
service P = 0.868

Static mode P = 0.031

From these figures the MTBF of each system can be computed, giving:

Mode II MTBF = 3,55Z hours

Mode I or II MTBF = 14, 178 hours

Any usable MTBF = 18,879 hours

VIII-2 R-2870-3582
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From this, it appears that a Mode II (at launch) system will provide:

Mode 11 service

Mode I service

Static service total

3,552 hours

10,626 hours

Z, 350 hours

Total 16,528 hours

A perfect logic system would give:

Mode II

Mode I

3,815 hours

17,061 hours

Total 20,876 hours

On the other hand, a system without logic could use only one receiver, and

one antenna (plus a transmitter). Such a system would have a probability

of surviving 2000 hours of

P - (0. 951)(0. 789) = 0. 750

and a MTBF of 6963 hours. Assuming a random vehicle orientation and

an antenna which covered 85 per cent of space, the service life of this system

would come to 5919 hours.

The above computations are all based on random vehicle orientation. If
vehicle orientation is controllable, the antenna selecting portion of the logic

can be disabled after control is established to assure retention of correct

antenna. They also assume 100 per cent reliability for cabling and the
antennas. Since these elements are totally passive, this appears a reason-

able assumption. In any case, such portions would affect any system equally

and would not enter into comparisons significantly.

VIH-3 R-Z870-358Z
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IX. WEIGHT ESTIMATES

The total Mode II - Case I system is to weigh 28 pounds or less. The

specified weights for one transmitter and two receivers is Z0 pounds,

leaving 8 pounds for the antennas, switches, logic, cables, connectors,

and wiring. The table below summarizes the weights that were estimated

for a Mode II - Case I system, as described in this report, if it were

designed for space flight.

Omni Antenna 1 - 3/4 ibs.

Helix 3/4 lb.

RF Cabling 1-1/4 Ibs.
KF Connectors 3/4 lb.

RF Switches {K1, 3 and4) 2-1/Z lbs.

Logic and Wiring 1 lb.

Total 8 Ibs.

A Mode III system would require approximately one additional pound plus

the weight of the additional antenna and RF cabling.

A Mode I system eliminates one receiver (9 pounds) and considerable RF

cabling and connectors as wellas requiring only one SPDT RF switch. The

total saving in weight for a Mode I system is estimated at IZ pounds.
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X. SUMMARY

A.

BQ

Antennas

A pair of antennas that meet the requirements necessary to provide

right circularly polarized spherical coverage with maximum reliabil <-

ity for a closed loop spacecraft telemetry system have been developed.

Possible choices for antenna designs to provide two different types

of pattern coverages are described.

Detailed theoretical analysis and results of hardware development

are presented for one of the designs. The principal antenna ,*as

designed for maximum possible coverage with right circular po!ariz_,-

tion and the null region is covered by the secondary anlenna, a

simple axial mode helix. The principal, or omni antenna, consists
of eight sets of dumbbell loaded crossed slots located on a circum-

ference of a circular waveguide which is supporting a circularly

polarized standing wave. Extremely good agreement between the

theoretically predicted and the measured performance was obtained

for both antennas. The application of these antennas to a Ranger type

spacecraft and measured patterns on a Ranger mockup are detailed

in Appendix I.

Switching Logic

In summary, the logic selects the most sensitive receiver for use

on-line. It switches to the alternate antenna from that in use if the

on-line antenna receiver combination is not adequate and the standby

antenna receiver combination is superior.

The condition specified above must continue for two minutes before

transfer occurs.

If both antennas yield inadequate signals based on original require-

ments, these requirements are relaxed to allow use of marginal

signals. If even this relaxed level cannot be met, the logic selects

the principal antenna and operates with it until the signal strength

recovers. Then the logic returns to service at original or relaxed
levels, whichever can be met.

A ground control method of antenna switching is proposed wherein

the operator can assume complete manual control in case of failure

or desire to do so. The status of all switching functions as well as

the comparator status is telemetered as data to ground control.

Through the CCS, ground control can toggle any switching function.

X-1 R-Z._70-:;58.'.-A
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the principal antenna and operates with it until the signal strength

recovers. Then the logic returns to service at original or relaxed
levels, whichever can be met.

Remote control of the various RF switches can be readily added.

The only change in logic required is a method to turn the logic on
and off by ground command. The only common components are the

coaxial relays and the remote-local relay contacts. Remote control

will not, of course, aid in establishing {.ontact, but once established,

it coulcl be used to extend logic lifetime and save on power consumption.

X-2 R-Z870-358Z
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APPENDIX I

Appendix I includes complete free space patterns and all of the

antenna-on-spacecraft patterns for various spacecraft configurations.
Due to its bulk, it is under separate cover.
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